Breast Cancer Risk and Insulin Resistance: Post Genome-Wide Gene-Environment Interaction Study Using a Random Survival Forest

被引:22
|
作者
Jung, Su Yon [1 ]
Papp, Jeanette C. [2 ]
Sobel, Eric M. [2 ]
Yu, Herbert [3 ]
Zhang, Zuo-Feng [4 ]
机构
[1] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Sch Med, Translat Sci Sect, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA
[3] Univ Hawaii, Canc Epidemiol Program, Ctr Canc, Honolulu, HI 96822 USA
[4] Univ Calif Los Angeles, Fielding Sch Publ Hlth, Dept Epidemiol, Los Angeles, CA USA
关键词
ORAL-CONTRACEPTIVE USE; POSTMENOPAUSAL WOMEN; SUSCEPTIBILITY LOCI; GLUCOSE-METABOLISM; HORMONE-THERAPY; LUNG-CANCER; OBESITY; HEALTH; ASSOCIATION; HOMEOSTASIS;
D O I
10.1158/0008-5472.CAN-18-3688
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Obesity-insulin connections have been considered potential risk factors for postmenopausal breast cancer, and the association between insulin resistance (IR) genotypes and phenotypes can be modified by obesity-lifestyle factors, affecting breast cancer risk. In this study, we explored the role of IR in those pathways at the genome-wide level. We identified IR-genetic factors and selected lifestyles to generate risk profiles for postmenopausal breast cancer. Using large-scale cohort data from postmenopausal women in the Women's Health Initiative Database for Genotypes and Phenotypes Study, our previous genome-wide association gene-behavior interaction study identified 58 loci for associations with IR phenotypes (homeostatic model assessment-IR, hyperglycemia, and hyperinsulinemia). We evaluated those single-nucleotide polymorphisms (SNP) and additional 31 lifestyles in relation to breast cancer risk by conducting a two-stage multimodal random survival forest analysis. We identified the most predictive genetic and lifestyle variables in overall and subgroup analyses [stratified by body mass index (BMI), exercise, and dietary fat intake]. Two SNPs (LINC00460 rs17254590 and MKLN1 rs117911989), exogenous factors related to lifetime cumulative exposure to estrogen, BMI, and dietary alcohol consumption were the most common influential factors across the analyses. Individual SNPs did not have significant associations with breast cancer, but SNPs and lifestyles combined synergistically increased the risk of breast cancer in a gene-behavior, dose-dependent manner. These findings may contribute to more accurate predictions of breast cancer and suggest potential intervention strategies for women with specific genetic and lifestyle factors to reduce their breast cancer risk. Significance: These findings identify insulin resistance SNPs in combination with lifestyle as synergistic factors for breast cancer risk, suggesting lifestyle changes can prevent breast cancer in women who carry the risk genotypes.
引用
收藏
页码:2784 / 2794
页数:11
相关论文
共 50 条
  • [1] Post Genome-Wide Gene-Environment Interaction Study Using Random Survival Forest: Insulin Resistance, Lifestyle Factors, and Colorectal Cancer Risk
    Jung, Su Yon
    Papp, Jeanette C.
    Sobel, Eric M.
    Zhang, Zuo-Feng
    CANCER PREVENTION RESEARCH, 2019, 12 (12) : 877 - 889
  • [2] Post genome-wide gene-environment interaction study: The effect of genetically driven insulin resistance on breast cancer risk using Mendelian randomization
    Jung, Su Yon
    Mancuso, Nicholas
    Papp, Jeanette
    Sobel, Eric
    Zhang, Zuo-Feng
    PLOS ONE, 2019, 14 (06):
  • [3] A genome-wide gene-environment interaction study of breast cancer risk for women of European ancestry
    Middha, Pooja K.
    Wang, Xiaoliang
    Behrens, Sabine
    Bolla, Manjeet K.
    Wang, Qin
    Dennis, Joe
    Michailidou, Kyriaki
    Ahearn, Thomas U.
    Andrulis, Irene L.
    Anton-Culver, Hoda
    Arndt, Volker
    Aronson, Kristan J.
    Auer, Paul L.
    Augustinsson, Annelie
    Baert, Thais
    Freeman, Laura E. Beane
    Becher, Heiko
    Beckmann, Matthias W.
    Benitez, Javier
    Bojesen, Stig E.
    Brauch, Hiltrud
    Brenner, Hermann
    Brooks-Wilson, Angela
    Campa, Daniele
    Canzian, Federico
    Carracedo, Angel
    Castelao, Jose E.
    Chanock, Stephen J.
    Chenevix-Trench, Georgia
    Cordina-Duverger, Emilie
    Couch, Fergus J.
    Cox, Angela
    Cross, Simon S.
    Czene, Kamila
    Dossus, Laure
    Dugue, Pierre-Antoine
    Eliassen, A. Heather
    Eriksson, Mikael
    Evans, D. Gareth
    Fasching, Peter A.
    Figueroa, Jonine
    Fletcher, Olivia
    Flyger, Henrik
    Gabrielson, Marike
    Gago-Dominguez, Manuela
    Giles, Graham G.
    Gonzalez-Neira, Anna
    Grassmann, Felix
    Grundy, Anne
    Guenel, Pascal
    BREAST CANCER RESEARCH, 2023, 25 (01)
  • [4] Genome-Wide Meta-analysis of Gene-Environmental Interaction for Insulin Resistance Phenotypes and Breast Cancer Risk in Postmenopausal Women
    Jung, Su Yon
    Mancuso, Nick
    Yu, Herbert
    Papp, Jeanette
    Sobei, Eric
    Zhang, Zuo-Feng
    CANCER PREVENTION RESEARCH, 2019, 12 (01) : 31 - 41
  • [5] A Genome-Wide Gene-Based Gene-Environment Interaction Study of Breast Cancer in More than 90,000 Women
    Wang, Xiaoliang
    Chen, Hongjie
    Kapoor, Pooja Middha
    Su, Yu-Ru
    Bolla, Manjeet K.
    Dennis, Joe
    Dunning, Alison M.
    Lush, Michael
    Wang, Qin
    Michailidou, Kyriaki
    Pharoah, Paul D. P.
    Hopper, John L.
    Southey, Melissa C.
    Koutros, Stella
    Freeman, Laura E. Beane
    Stone, Jennifer
    Rennert, Gad
    Shibli, Rana
    Murphy, Rachel A.
    Aronson, Kristan
    Guenel, Pascal
    Truong, Therese
    Teras, Lauren R.
    Hodge, James M.
    Canzian, Federico
    Kaaks, Rudolf
    Brenner, Hermann
    Arndt, Volker
    Hoppe, Reiner
    Lo, Wing-Yee
    Behrens, Sabine
    Mannermaa, Arto
    Kosma, Veli-Matti
    Jung, Audrey
    Becher, Heiko
    Glies, Graham G.
    Haiman, Christopher A.
    Maskarinec, Gertraud
    Scott, Christopher
    Winham, Stacey
    Simard, Jacques
    Goldberg, Mark S.
    Zheng, Wei
    Long, Jirong
    Troester, Melissa A.
    Love, Michael I.
    Peng, Cheng
    Tamimi, Rulla
    Eliassen, Heather
    Garcia-Closas, Montserrat
    CANCER RESEARCH COMMUNICATIONS, 2022, 2 (04): : 211 - 219
  • [6] A comprehensive gene-environment interaction analysis in Ovarian Cancer using genome-wide significant common variants
    Kim, Sehee
    Wang, Miao
    Tyrer, Jonathan P.
    Jensen, Allan
    Wiensch, Ashley
    Liu, Gang
    Lee, Alice W.
    Ness, Roberta B.
    Salvatore, Maxwell
    Tworoger, Shelley S.
    Whittemore, Alice S.
    Anton-Culver, Hoda
    Sieh, Weiva
    Olson, Sara H.
    Berchuck, Andrew
    Goode, Ellen L.
    Goodman, Marc T.
    Doherty, Jennifer Anne
    Chenevix-Trench, Georgia
    Rossing, Mary Anne
    Webb, Penelope M.
    Giles, Graham G.
    Terry, Kathryn L.
    Ziogas, Argyrios
    Fortner, Renee T.
    Menon, Usha
    Gayther, Simon A.
    Wu, Anna H.
    Song, Honglin
    Brooks-Wilson, Angela
    Bandera, Elisa, V
    Cook, Linda S.
    Cramer, Daniel W.
    Milne, Roger L.
    Winham, Stacey J.
    Kjaer, Susanne K.
    Modugno, Francesmary
    Thompson, Pamela J.
    Chang-Claude, Jenny
    Harris, Holly R.
    Schildkraut, Joellen M.
    Le, Nhu D.
    Wentzensen, Nico
    Trabert, Britton
    Hogdall, Estrid
    Huntsman, David
    Pike, Malcolm C.
    Pharoah, Paul D. P.
    Pearce, Celeste Leigh
    Mukherjee, Bhramar
    INTERNATIONAL JOURNAL OF CANCER, 2019, 144 (09) : 2192 - 2205
  • [7] Genome-Wide Meta-Regression of Gene-Environment Interaction
    Xu, Xiaoxiao
    Shi, Gang
    Nehorai, Arye
    2012 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS), 2012, : 62 - 65
  • [8] Gene-environment interaction and risk of breast cancer
    Rudolph, Anja
    Chang-Claude, Jenny
    Schmidt, Marjanka K.
    BRITISH JOURNAL OF CANCER, 2016, 114 (02) : 125 - 133
  • [9] Gene polymorphisms related to insulin resistance and gene-environment interaction in colorectal cancer risk
    Hu, Xiaoqin
    Feng, Fei
    Li, Xiaoling
    Yuan, Ping
    Luan, Rongsheng
    Yan, Jin
    Liu, Wenhui
    Yang, Yanfang
    ANNALS OF HUMAN BIOLOGY, 2015, 42 (06) : 560 - 568
  • [10] Powerful Cocktail Methods for Detecting Genome-Wide Gene-Environment Interaction
    Hsu, Li
    Jiao, Shuo
    Dai, James Y.
    Hutter, Carolyn
    Peters, Ulrike
    Kooperberg, Charles
    GENETIC EPIDEMIOLOGY, 2012, 36 (03) : 183 - 194