Objective: The aim of this study was to investigate the suppressive effects of Buforin II on the growth of HepG2 cells. To accomplish this, we created a recombinant plasmid (pSUR-Buforin2) in which the survivin promoter was modified to drive the Buforin II gene. Methods: The DNA fragment encoding the Buforin II gene was obtained by gene synthesis and cloned into the pSUR-Luc plasmid behind the survivin promoter. The vector was subsequently transfected into HepG2 and LO2 cells. Cell proliferation was measured by the MTT assay, cell cytotoxicity detected by the LDH assay, and cell apoptosis determined by flow cytometry, DNA ladder assays, and immunoblot analysis. Results: The pSUR-Buforin2 vector effectively suppressed the proliferation of HepG2 cells. The MTT and LDH assay demonstrated that under control of the survivin promoter, Buforin II was not expressed in LO2 cells, but it was expressed in tumor cells where cell death was also observed. AnnexinV-PI staining, DNA ladder assays, and western blots showed massive apoptosis in HepG2 cells transfected with pSUR-Buforin2. Conclusion: pSUR-Buforin2 can significantly inhibit the growth of HepG2 cells, resulting in increased cancer cell apoptosis. Thus, this newly designed plasmid might provide a potent and selective anticancer therapy.