X-band rapid-scan EPR of samples with long electron spin relaxation times: a comparison of continuous wave, pulse and rapid-scan EPR

被引:45
作者
Mitchell, Deborah G. [1 ]
Tseitlin, Mark [1 ]
Quine, Richard W. [2 ]
Meyer, Virginia [1 ]
Newton, Mark E. [3 ]
Schnegg, Alexander [4 ]
George, Benjamin [4 ]
Eaton, Sandra S. [1 ]
Eaton, Gareth R. [1 ]
机构
[1] Univ Denver, Dept Chem & Biochem, Denver, CO 80208 USA
[2] Univ Denver, Sch Engn & Comp Sci, Denver, CO USA
[3] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[4] Helmholtz Zentrum Berlin Mat & Energie, Inst Silicon Photovolta, Berlin, Germany
基金
美国国家科学基金会;
关键词
rapid-scan EPR; hydrogenated silicon; N@C-60; single substitutional N in diamond; UNIFORM-PENALTY INVERSION; MAGNETIC-RESONANCE; LINE WIDTHS; ABSORPTION; RADICALS; DEFECTS; SPECTRA; SILICON;
D O I
10.1080/00268976.2013.792959
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
X-band room temperature spectra obtained by rapid-scan, continuous wave, field-swept echo-detected and Fourier transform electron paramagnetic resonance (FTEPR) were compared for three samples with long electron spin relaxation times: amorphous hydrogenated silicon (T-1 = 11s, T-2 = 3.3s), 0.2% N@C-60 solid (T-1 = 120-160s, T-2 = 2.8s) and neutral single substitutional nitrogen centres (N-S(0)) in diamonds (T-1 = 2300s, T-2 = 230s). For each technique, experimental parameters were selected to give less than 2% broadening of the lineshape. For the same data acquisition times, the signal-to-noise for the rapid-scan spectra was one-to-two orders of magnitude better than for continuous wave or field-swept echo-detected spectra. For amorphous hydrogenated silicon, T-2(*) (approximate to 10ns) is too short to perform FTEPR. For 0.2% N@C-60, the signal-to-noise ratio for rapid scan is about five times better than for FTEPR. For N-S(0) the signal-to-noise ratio is similar for rapid scan and FTEPR.
引用
收藏
页码:2664 / 2673
页数:10
相关论文
共 45 条
[1]   Relaxation times and line widths of isotopically-substituted nitroxides in aqueous solution at X-band [J].
Biller, Joshua R. ;
Meyer, Virginia ;
Elajaili, Hanan ;
Rosen, Gerald M. ;
Kao, Joseph P. Y. ;
Eaton, Sandra S. ;
Eaton, Gareth R. .
JOURNAL OF MAGNETIC RESONANCE, 2011, 212 (02) :370-377
[2]   ESR imaging in solid phase down to sub-micron resolution: methodology and applications [J].
Blank, Aharon ;
Suhovoy, Ekaterina ;
Halevy, Revital ;
Shtirberg, Lazar ;
Harneit, Wolfgang .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (31) :6689-6699
[3]   Uniform-penalty inversion of multiexponential decay data [J].
Borgia, GC ;
Brown, RJS ;
Fantazzini, P .
JOURNAL OF MAGNETIC RESONANCE, 1998, 132 (01) :65-77
[4]   Uniform-penalty inversion of multiexponential decay data -: II.: Data spacing, T2 data, systematic data errors, and diagnostics [J].
Borgia, GC ;
Brown, RJS ;
Fantazzini, P .
JOURNAL OF MAGNETIC RESONANCE, 2000, 147 (02) :273-285
[5]   C-13, N-14 AND N-15 ENDOR MEASUREMENTS ON THE SINGLE SUBSTITUTIONAL NITROGEN CENTER (P1) IN DIAMOND [J].
COX, A ;
NEWTON, ME ;
BAKER, JM .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (02) :551-563
[6]   CORRELATION NMR-SPECTROSCOPY [J].
DADOK, J ;
SPRECHER, RF .
JOURNAL OF MAGNETIC RESONANCE, 1974, 13 (02) :243-248
[7]   Atomic nitrogen encapsulated in fullerenes: Effects of cage variations [J].
Dietel, E ;
Hirsch, A ;
Pietzak, B ;
Waiblinger, M ;
Lips, K ;
Weidinger, A ;
Gruss, A ;
Dinse, KP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (11) :2432-2437
[8]  
Eaton S. S., 2014, HDB HIGH FREQUENCY E
[9]  
Eaton SS, 2000, BIO MAGN RE, V19, P29
[10]   Production of oriented nitrogen-vacancy color centers in synthetic diamond [J].
Edmonds, A. M. ;
D'Haenens-Johansson, U. F. S. ;
Cruddace, R. J. ;
Newton, M. E. ;
Fu, K. -M. C. ;
Santori, C. ;
Beausoleil, R. G. ;
Twitchen, D. J. ;
Markham, M. L. .
PHYSICAL REVIEW B, 2012, 86 (03)