On the Best Polynomial Approximation in Hardy Space

被引:0
作者
Shabozov, M. Sh. [1 ]
Malakbozov, Z. Sh. [2 ]
机构
[1] Tajik Natl Univ, Dushanbe 734025, Tajikistan
[2] Inst Tourism Entrepreneurship & Serv, Dushanbe 734055, Tajikistan
关键词
best polynomial approximation; generalized modulus of continuity; K-functional; characteristic of smoothness; n-width; JACKSON-TYPE INEQUALITIES; ANALYTIC-FUNCTIONS; WIDTHS; KOLMOGOROV;
D O I
10.3103/S1066369X2211007X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sharp Jackson-Stechkin-type inequalities, in which the best polynomial approximation of a function in the Hardy space is estimated from above, both in terms of the generalized modulus H-2 of continuity of the mth order and in terms of the K-functional of rth derivatives, are found. For some classes of functions defined with the formulated characteristics in the space, the exact values of H-2 n widths are calculated. Also in the classes W-2((r))((omega) over tilde (m), Phi) and W-2((r))(K-m, Phi), where r is an element of N and r >= 2, the exact values of the best polynomial approximations of intermediate derivatives f((s)), 1 <= s <= r -1 are obtained.
引用
收藏
页码:97 / 109
页数:13
相关论文
共 50 条