On the Best Polynomial Approximation in Hardy Space

被引:0
|
作者
Shabozov, M. Sh. [1 ]
Malakbozov, Z. Sh. [2 ]
机构
[1] Tajik Natl Univ, Dushanbe 734025, Tajikistan
[2] Inst Tourism Entrepreneurship & Serv, Dushanbe 734055, Tajikistan
关键词
best polynomial approximation; generalized modulus of continuity; K-functional; characteristic of smoothness; n-width; JACKSON-TYPE INEQUALITIES; ANALYTIC-FUNCTIONS; WIDTHS; KOLMOGOROV;
D O I
10.3103/S1066369X2211007X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sharp Jackson-Stechkin-type inequalities, in which the best polynomial approximation of a function in the Hardy space is estimated from above, both in terms of the generalized modulus H-2 of continuity of the mth order and in terms of the K-functional of rth derivatives, are found. For some classes of functions defined with the formulated characteristics in the space, the exact values of H-2 n widths are calculated. Also in the classes W-2((r))((omega) over tilde (m), Phi) and W-2((r))(K-m, Phi), where r is an element of N and r >= 2, the exact values of the best polynomial approximations of intermediate derivatives f((s)), 1 <= s <= r -1 are obtained.
引用
收藏
页码:97 / 109
页数:13
相关论文
共 50 条
  • [1] On the Best Polynomial Approximation in Hardy Space
    M. Sh. Shabozov
    Z. Sh. Malakbozov
    Russian Mathematics, 2022, 66 : 97 - 109
  • [2] On the best simultaneous polynomial approximation of functions and their derivatives in Hardy spaces
    Shabozov, M. Sh.
    Yusupov, G. A.
    Zargarov, J. J.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2021, 27 (04): : 239 - 254
  • [3] On the best simultaneous approximation of functions in the Hardy space.
    Shabozov, M. Sh
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2023, 29 (04): : 283 - 291
  • [4] Best polynomial approximation on the triangle
    Feng, Han
    Krattenthaler, Christian
    Xu, Yuan
    JOURNAL OF APPROXIMATION THEORY, 2019, 241 : 63 - 78
  • [5] Best Polynomial Approximations and Widths of Classes of Functions in the Space L 2
    Vakarchuk, S. B.
    MATHEMATICAL NOTES, 2018, 103 (1-2) : 308 - 312
  • [6] On the Best Simultaneous Approximation in the Bergman Space B2
    Shabozov, M. Sh.
    MATHEMATICAL NOTES, 2023, 114 (3-4) : 377 - 386
  • [7] Best Polynomial Approximations and Widths of Classes of Functions in the Space L2
    S. B. Vakarchuk
    Mathematical Notes, 2018, 103 : 308 - 312
  • [8] Best uniform polynomial approximation of some rational functions
    Dehghan, Mehdi
    Eslahchi, M. R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) : 382 - 390
  • [9] A New Remez-Type Algorithm for Best Polynomial Approximation
    Egidi, Nadaniela
    Fatone, Lorella
    Misici, Luciano
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS, PT I, 2020, 11973 : 56 - 69
  • [10] The Best Uniform Polynomial Approximation of Two Classes of Rational Functions
    Eslahchi, M. R.
    Amani, Sanaz
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2012, 7 (02): : 93 - 102