Selection analysis in genetic algorithms

被引:0
作者
Galaviz-Casas, J [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Area Inv Cientif, CU, Mexico City 04510, DF, Mexico
来源
PROGRESS IN ARTIFICIAL INTELLIGENCE-IBERAMIA 98 | 1998年 / 1484卷
关键词
genetic algorithms; Hamming distance; partition; poset; metric space; convergence; entropy;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a formal framework for the analysis of genetic algorithms. The model is based on the idea that over the space of populations an equivalence relation can be defined, as well as a metric on the space of equivalence classes induced by this relation. With this tools it can be proved that selection in a GA causes some kind of convergence and entropy reduction. The model is not restricted to a particular kind of selection.
引用
收藏
页码:283 / 292
页数:10
相关论文
共 18 条
[1]  
ADAMECK J, 1991, FDN CODING
[2]  
BACK T, 1991, P 4 INT C GEN ALG TH
[3]  
BIRKHOFF G, 1963, GEN LATTICE THEORY
[4]  
DAVIS TE, 1993, EVOLUTIONARY COMPUTA, V3
[5]  
DEJONG KAW, 1994, P 3 FDN GEN ALG WORK
[6]  
Dieudonne J., 1960, FDN MODERN ANAL
[7]  
ESTIVILCASTRO V, 1997, P 1 INT WORKSH FRONT, V1
[8]  
Gratzer G., 1978, GEN LATTICE THEORY
[9]  
HAMMING RW, 1980, CODING INFORMATION T
[10]  
HOLLAND JH, 1975, ADAPTATION NATURAL A