DEWE: A novel tool for executing differential expression RNA-Seq workflows in biomedical research

被引:9
|
作者
Lopez-Fernandez, Hugo [1 ,2 ,3 ,4 ,5 ]
Blanco-Miguez, Aitor [1 ,2 ,6 ]
Fdez-Riverola, Florentino [1 ,2 ,3 ]
Sanchez, Borja [6 ]
Lourenco, Analia [1 ,2 ,3 ,7 ]
机构
[1] Univ Vigo, ESEI Escuela Super Ingn Informat, Edificio Politecn,Campus Univ Lagoas S-N, Orense 32004, Spain
[2] Univ Vigo, CINBIO Ctr Invest Biomed, Campus Univ Lagoas Marcosende, Vigo 36310, Spain
[3] Hosp Alvaro Cunqueiro, SERGAS UVIGO, Galicia Sur Hlth Res Inst IIS Galicia Sur, SING Res Grp, Vigo 36312, Spain
[4] Univ Porto, Rua Alfredo Allen 208, P-4200135 Porto, Portugal
[5] IBMC, Rua Alfredo Allen 208, P-4200135 Porto, Portugal
[6] CSIC, IPLA, Dept Microbiol & Biochem Dairy Prod, Paseo Rio Linares S-N, Villaviciosa 33300, Asturias, Spain
[7] Univ Minho, CEB Ctr Biol Engn, Campus Gualtar, P-4710057 Braga, Portugal
关键词
Differential expression; RNA-Seq; Open-source software; Workflow management; Translational application; BIOCONDUCTOR PACKAGE; GENE-REGULATION; TRANSCRIPTOME; DISCOVERY; STRINGTIE; PIPELINE; HISAT;
D O I
10.1016/j.compbiomed.2019.02.021
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Transcriptomics profiling aims to identify and quantify all transcripts present within a cell type or tissue at a particular state, and thus provide information on the genes expressed in specific experimental settings, differentiation or disease conditions. RNA-Seq technology is becoming the standard approach for such studies, but available analysis tools are often hard to install, configure and use by users without advanced bioinformatics skills. Methods: Within reason, DEWE aims to make RNA-Seq analysis as easy for non-proficient users as for experienced bioinformaticians. DEWE supports two well-established and widely used differential expression analysis workflows: using Bowtie2 or HISAT2 for sequence alignment; and, both applying StringTie for quantification, and Ballgown and edgeR for differential expression analysis. Also, it enables the tailored execution of individual tools as well as helps with the management and visualisation of differential expression results. Results: DEWE provides a user-friendly interface designed to reduce the learning curve of less knowledgeable users while enabling analysis customisation and software extension by advanced users. Docker technology helps overcome installation and configuration hurdles. In addition, DEWE produces high quality and publication-ready outputs in the form of tab-delimited files and figures, as well as helps researchers with further analyses, such as pathway enrichment analysis. Conclusions: The abilities of DEWE are exemplified here by practical application to a comparative analysis of monocytes and monocyte-derived dendritic cells, a study of clinical relevance. DEWE installers and documentation are freely available at https://www.sing-group.org/dewe.
引用
收藏
页码:197 / 205
页数:9
相关论文
共 50 条
  • [31] Detecting differential expression from RNA-seq data with expression measurement uncertainty
    Li Zhang
    Songcan Chen
    Xuejun Liu
    Frontiers of Computer Science, 2015, 9 : 652 - 663
  • [32] Detecting differential expression from RNA-seq data with expression measurement uncertainty
    Zhang, Li
    Chen, Songcan
    Liu, Xuejun
    FRONTIERS OF COMPUTER SCIENCE, 2015, 9 (04) : 652 - 663
  • [34] A Semi-parametric Bayesian Approach for Differential Expression Analysis of RNA-seq Data
    Fangfang Liu
    Chong Wang
    Peng Liu
    Journal of Agricultural, Biological, and Environmental Statistics, 2015, 20 : 555 - 576
  • [35] Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data
    Li, Jun
    Tibshirani, Robert
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2013, 22 (05) : 519 - 536
  • [36] A Semi-parametric Bayesian Approach for Differential Expression Analysis of RNA-seq Data
    Liu, Fangfang
    Wang, Chong
    Liu, Peng
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2015, 20 (04) : 555 - 576
  • [37] Unit-Free and Robust Detection of Differential Expression from RNA-Seq Data
    Jiang H.
    Zhan T.
    Statistics in Biosciences, 2017, 9 (1) : 178 - 199
  • [38] RNAflow: An Effective and Simple RNA-Seq Differential Gene Expression Pipeline Using Nextflow
    Lataretu, Marie
    Hoelzer, Martin
    GENES, 2020, 11 (12) : 1 - 17
  • [39] Impact of human gene annotations on RNA-seq differential expression analysis
    Yu Hamaguchi
    Chao Zeng
    Michiaki Hamada
    BMC Genomics, 22
  • [40] A scaling normalization method for differential expression analysis of RNA-seq data
    Robinson, Mark D.
    Oshlack, Alicia
    GENOME BIOLOGY, 2010, 11 (03):