Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells

被引:208
|
作者
Alzhavan, Omid [1 ,2 ]
Ghaderi, Elham [1 ]
Shahsavar, Mahla [1 ]
机构
[1] Sharif Univ Technol, Dept Phys, Tehran, Iran
[2] Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran, Iran
关键词
CARBON NANOTUBES; OXIDE; REDUCTION; CULTURE; NANOPARTICLES; GENOTOXICITY; ANTIOXIDANT; NANOSHEETS; MONOLAYER; NANOSCALE;
D O I
10.1016/j.carbon.2013.03.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene nanogrids (fabricated by graphene nanoribbons obtained through oxidative unzipping of multi-walled carbon nanotubes) were used as two-dimensional selective templates for accelerated differentiation of human mesenchymal stem cells (hMSCs), isolated from umbilical cord blood, into osteogenic lineage. The biocompatible and hydrophilic graphene nanogrids showed high actin cytoskeleton proliferations coinciding with patterns of the nanogrids. The amounts of proliferations were found slightly better than proliferation on hydrophilic graphene oxide (GO) sheets, and significantly higher than non-uniform proliferations on hydrophobic reduced graphene oxide (rGO) sheets and polydimethylsiloxane substrate. In the presence of chemical inducers, the reduced graphene oxide nanoribbon (rGONR) grid showed a highly accelerated osteogenic differentiation of the hMSCs (a patterned differentiation) in short time of 7 days in which the amount of the osteogenesis was similar to 2.2 folds greater than the differentiation (a uniform differentiation) on the rGO sheets. We found that although in the absence of any chemical inducers the graphene nanogrids showed slight patterned osteogenic differentiations, the graphene sheets could not present any differentiation. Therefore, the highly accelerated differentiation on the rGONR grid was assigned to both its excellent capability in adsorption of the chemical inducers and physical stresses induced by the surface topographic features of the nanogrids. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:200 / 211
页数:12
相关论文
共 50 条
  • [21] HOX gene analysis in the osteogenic differentiation of human mesenchymal stem cells
    Chae, Song Wha
    Jee, Bo Keun
    Lee, Joo Yong
    Han, Chang Whan
    Jeon, Yang-Whan
    Lim, Young
    Lee, Kweon-Haeng
    Rha, Hyoung Kyun
    Chae, Gue-Tae
    GENETICS AND MOLECULAR BIOLOGY, 2008, 31 (04) : 815 - 823
  • [22] EFFECT OF SCAFFOLD MICROARCHITECTURE ON OSTEOGENIC DIFFERENTIATION OF HUMAN MESENCHYMAL STEM CELLS
    Phadke, Ameya
    Hwang, YongSung
    Kim, Su Hee
    Kim, Soo Hyun
    Yamaguchi, Tomonori
    Masuda, Koichi
    Varghese, Shyni
    EUROPEAN CELLS & MATERIALS, 2013, 25 : 114 - 129
  • [23] Chordin knockdown enhances the osteogenic differentiation of human mesenchymal stem cells
    Kwong, Francois N. K.
    Richardson, Stephen M.
    Evans, Christopher H.
    ARTHRITIS RESEARCH & THERAPY, 2008, 10 (03)
  • [24] Investigating the role of collagen in osteogenic differentiation of human mesenchymal stem cells
    Fernandes, H.
    Leusink, A.
    Dechering, K.
    van Someren, E. P.
    van Blitterswijk, C. A.
    de Boer, J.
    TISSUE ENGINEERING PART A, 2008, 14 (05) : 871 - 872
  • [25] ADHESION AND OSTEOGENIC DIFFERENTIATION OF HUMAN MESENCHYMAL STEM CELLS ON TITANIUM NANOPORES
    Lavenus, Sandrine
    Berreur, Martine
    Trichet, Valerie
    Pilet, Paul
    Louarn, Guy
    Layrolle, Pierre
    EUROPEAN CELLS & MATERIALS, 2011, 22 : 84 - 96
  • [26] Osteogenic Differentiation of Human Mesenchymal Stem Cells in Mineralized Alginate Matrices
    Westhrin, Marita
    Xie, Minli
    Olderoy, Magnus O.
    Sikorski, Pawel
    Strand, Berit L.
    Standal, Therese
    PLOS ONE, 2015, 10 (03):
  • [27] Biomimetic Nanocomposites to Control Osteogenic Differentiation of Human Mesenchymal Stem Cells
    Liao, Susan
    Nguyen, Luong T. H.
    Ngiam, Michelle
    Wang, Charlene
    Cheng, Ziyuan
    Chan, Casey K.
    Ramakrishna, Seeram
    ADVANCED HEALTHCARE MATERIALS, 2014, 3 (05) : 737 - 751
  • [28] Activated leukocytes promote osteogenic differentiation of human mesenchymal stem cells
    Koeller, M.
    Kroll, V.
    Schildhauer, T. A.
    Muhr, G.
    PROCEEDINGS OF THE XLI CONGRESS OF THE EUROPEAN SOCIETY FOR SURGICAL RESEARCH, 2006, : 49 - +
  • [29] Reduction in Gsα induces osteogenic differentiation in human mesenchymal stem cells
    Lietman, SA
    Ding, CL
    Cooke, DW
    Levine, MA
    CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2005, (434) : 231 - 238
  • [30] Induction of Osteogenic Differentiation in Human Mesenchymal Stem Cells by Crosstalk with Osteoblasts
    Glueck, Martina
    Gardner, Oliver
    Czekanska, Ewa
    Alini, Mauro
    Stoddart, Martin J.
    Salzmann, Gian M.
    Schmal, Hagen
    BIORESEARCH OPEN ACCESS, 2015, 4 (01): : 121 - 130