Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells

被引:208
作者
Alzhavan, Omid [1 ,2 ]
Ghaderi, Elham [1 ]
Shahsavar, Mahla [1 ]
机构
[1] Sharif Univ Technol, Dept Phys, Tehran, Iran
[2] Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran, Iran
关键词
CARBON NANOTUBES; OXIDE; REDUCTION; CULTURE; NANOPARTICLES; GENOTOXICITY; ANTIOXIDANT; NANOSHEETS; MONOLAYER; NANOSCALE;
D O I
10.1016/j.carbon.2013.03.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene nanogrids (fabricated by graphene nanoribbons obtained through oxidative unzipping of multi-walled carbon nanotubes) were used as two-dimensional selective templates for accelerated differentiation of human mesenchymal stem cells (hMSCs), isolated from umbilical cord blood, into osteogenic lineage. The biocompatible and hydrophilic graphene nanogrids showed high actin cytoskeleton proliferations coinciding with patterns of the nanogrids. The amounts of proliferations were found slightly better than proliferation on hydrophilic graphene oxide (GO) sheets, and significantly higher than non-uniform proliferations on hydrophobic reduced graphene oxide (rGO) sheets and polydimethylsiloxane substrate. In the presence of chemical inducers, the reduced graphene oxide nanoribbon (rGONR) grid showed a highly accelerated osteogenic differentiation of the hMSCs (a patterned differentiation) in short time of 7 days in which the amount of the osteogenesis was similar to 2.2 folds greater than the differentiation (a uniform differentiation) on the rGO sheets. We found that although in the absence of any chemical inducers the graphene nanogrids showed slight patterned osteogenic differentiations, the graphene sheets could not present any differentiation. Therefore, the highly accelerated differentiation on the rGONR grid was assigned to both its excellent capability in adsorption of the chemical inducers and physical stresses induced by the surface topographic features of the nanogrids. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:200 / 211
页数:12
相关论文
共 76 条
  • [1] Interfacing Live Cells with Nanocarbon Substrates
    Agarwal, Shuchi
    Zhou, Xiaozhu
    Ye, Feng
    He, Qiyuan
    Chen, George C. K.
    Soo, Jianchow
    Boey, Freddy
    Zhang, Hua
    Chen, Peng
    [J]. LANGMUIR, 2010, 26 (04) : 2244 - 2247
  • [2] Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide
    Akhavan, O.
    Kalaee, M.
    Alavi, Z. S.
    Ghiasi, S. M. A.
    Esfandiar, A.
    [J]. CARBON, 2012, 50 (08) : 3015 - 3025
  • [3] Protein Degradation and RNA Efflux of Viruses Photocatalyzed by Graphene-Tungsten Oxide Composite Under Visible Light Irradiation
    Akhavan, O.
    Choobtashani, M.
    Ghaderi, E.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (17) : 9653 - 9659
  • [4] Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner
    Akhavan, O.
    Ghaderi, E.
    [J]. CARBON, 2012, 50 (05) : 1853 - 1860
  • [5] Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria
    Akhavan, O.
    Azimirad, R.
    Safa, S.
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2011, 130 (1-2) : 598 - 602
  • [6] Wrapping Bacteria by Graphene Nanosheets for Isolation from Environment, Reactivation by Sonication, and Inactivation by Near-Infrared Irradiation
    Akhavan, O.
    Ghaderi, E.
    Esfandiar, A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (19) : 6279 - 6288
  • [7] Visible light photo-induced antibacterial activity of CNT-doped TiO2 thin films with various CNT contents
    Akhavan, O.
    Azimirad, R.
    Safa, S.
    Larijani, M. M.
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (35) : 7386 - 7392
  • [8] Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction
    Akhavan, O.
    Abdolahad, M.
    Esfandiar, A.
    Mohatashamifar, M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (30) : 12955 - 12959
  • [9] The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets
    Akhavan, O.
    [J]. CARBON, 2010, 48 (02) : 509 - 519
  • [10] Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation
    Akhavan, O.
    Ghaderi, E.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) : 20214 - 20220