An Efficient Domain Decomposition Laguerre-FDTD Method for Two-Dimensional Scattering Problems

被引:26
作者
He, Guo-Qiang [1 ]
Shao, Wei [1 ]
Wang, Xiao-Hua [1 ]
Wang, Bing-Zhong [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
Domain decomposition; Laguerre polynomials; scattering; Schur complement system; ABSORBING BOUNDARY-CONDITIONS; FINITE-DIFFERENCE METHOD; SCHEME; IMPLEMENTATION; EQUATIONS; ABC;
D O I
10.1109/TAP.2013.2242836
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, an efficient domain decomposition technique is introduced into the unconditionally stable finite-difference time-domain (FDTD) method based on weighted Laguerre polynomials to solve two-dimensional (2-D) electromagnetic scattering problems. The whole computational space is decomposed into multiple subdomains where there is no direct field coupling between any two different subdomains. For the large sparse matrix equation generated by the implicit scheme, the domain decomposition technique transforms this large scale equation into some independent smaller equations. With the total-field/scattered-field boundary and Mur's second-order absorbing boundary condition, the radar cross sections of two 2-D structures are calculated. The numerical examples verify the accuracy and efficiency of the proposed method.
引用
收藏
页码:2639 / 2645
页数:7
相关论文
共 18 条
[1]   An unconditionally stable Laguerre-based S-MRTD time-domain scheme [J].
Alighanbari, Abbas ;
Sarris, Costas D. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2006, 5 :69-72
[2]   The CFS-PML for Periodic Laguerre-Based FDTD Method [J].
Cai, Zhao-Yang ;
Chen, Bin ;
Liu, Kai ;
Duan, Yantao ;
Mao, Yunfei .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2012, 22 (04) :164-166
[3]   The WLP-FDTD Method for Periodic Structures With Oblique Incident Wave [J].
Cai, Zhao-Yang ;
Chen, Bin ;
Yin, Qin ;
Xiong, Run .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (10) :3780-3785
[4]   FDTD local grid with material traverse [J].
Chevalier, MW ;
Luebbers, RJ ;
Cable, VP .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (03) :411-421
[5]   An unconditionally stable scheme for the finite-difference time-domain method [J].
Chung, YS ;
Sarkar, TK ;
Jung, BH ;
Salazar-Palma, M .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2003, 51 (03) :697-704
[6]   Unconditionally stable FDTD formulation with UPML-ABC [J].
Ding, PP ;
Wang, GF ;
Lin, H ;
Wang, BZ .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2006, 16 (04) :161-163
[7]   Efficient Implementation for 3-D Laguerre-Based Finite-Difference Time-Domain Method [J].
Duan, Yan-Tao ;
Chen, Bin ;
Fang, Da-Gang ;
Zhou, Bi-Hua .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2011, 59 (01) :56-64
[8]   Transient Chip-Package Cosimulation of Multiscale Structures Using the Laguerre-FDTD Scheme [J].
Ha, Myunghyun ;
Srinivasan, Krishna ;
Swaminathan, Madhavan .
IEEE TRANSACTIONS ON ADVANCED PACKAGING, 2009, 32 (04) :816-830
[9]   A domain decomposition finite-difference method for parallel numerical implementation of time-dependent Maxwell's equations [J].
Lu, YJ ;
Shen, CY .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (03) :556-562
[10]   ABSORBING BOUNDARY-CONDITIONS FOR THE FINITE-DIFFERENCE APPROXIMATION OF THE TIME-DOMAIN ELECTROMAGNETIC-FIELD EQUATIONS [J].
MUR, G .
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1981, 23 (04) :377-382