The Importance of Skip Connections in Biomedical Image Segmentation

被引:818
作者
Drozdzal, Michal [1 ,2 ]
Vorontsov, Eugene [1 ,2 ]
Chartrand, Gabriel [1 ,3 ]
Kadoury, Samuel [2 ,4 ]
Pal, Chris [2 ,5 ]
机构
[1] Imagia Inc, Montreal, PQ, Canada
[2] Ecole Polytech, Montreal, PQ, Canada
[3] Univ Montreal, Montreal, PQ, Canada
[4] CHUM Res Ctr, Montreal, PQ, Canada
[5] Montreal Inst Learning Algorithms, Montreal, PQ, Canada
来源
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS | 2016年 / 10008卷
关键词
Semantic segmentation; FCN; ResNet; Skip connections; NETWORKS;
D O I
10.1007/978-3-319-46976-8_19
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the influence of both long and short skip connections on Fully Convolutional Networks (FCN) for biomedical image segmentation. In standard FCNs, only long skip connections are used to skip features from the contracting path to the expanding path in order to recover spatial information lost during downsampling. We extend FCNs by adding short skip connections, that are similar to the ones introduced in residual networks, in order to build very deep FCNs (of hundreds of layers). A review of the gradient flow confirms that for a very deep FCN it is beneficial to have both long and short skip connections. Finally, we show that a very deep FCN can achieve near-to-state-of-the-art results on the EM dataset without any further post-processing.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 22 条
[1]  
[Anonymous], 2016, CoRR
[2]  
[Anonymous], 2014, CORR
[3]   Crowdsourcing the creation of image segmentation algorithms for connectomics [J].
Arganda-Carreras, Ignacio ;
Turaga, Srinivas C. ;
Berger, Daniel P. ;
Ciresan, Dan ;
Giusti, Alessandro ;
Gambardella, Luca M. ;
Schmidhuber, Juergen ;
Laptev, Dmitry ;
Dwivedi, Sarvesh ;
Buhmann, Joachim M. ;
Liu, Ting ;
Seyedhosseini, Mojtaba ;
Tasdizen, Tolga ;
Kamentsky, Lee ;
Burget, Radim ;
Uher, Vaclav ;
Tan, Xiao ;
Sun, Changming ;
Pham, Tuan D. ;
Bas, Erhan ;
Uzunbas, Mustafa G. ;
Cardona, Albert ;
Schindelin, Johannes ;
Seung, H. Sebastian .
FRONTIERS IN NEUROANATOMY, 2015, 9 :1-13
[4]   Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation [J].
Brosch, Tom ;
Tang, Lisa Y. W. ;
Yoo, Youngjin ;
Li, David K. B. ;
Traboulsee, Anthony ;
Tam, Roger .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1229-1239
[5]  
Chen H, 2016, AAAI CONF ARTIF INTE, P1167
[6]  
Ciresan D., 2012, Advances in Neural Information Processing Systems 25 (NIPS 2012), P1
[7]  
Havaei M., 2015, CoRR
[8]  
He K., 2016, P IEEE C COMPUTER VI, P770, DOI DOI 10.1109/CVPR.2016.90
[9]  
He K., 2016, PROC CVPR IEEE, P630, DOI [10.1007/978-3-319-46493-0_38, DOI 10.1007/978-3-319-46493-0_38, DOI 10.1109/CVPR.2016.90]
[10]   PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization [J].
Kendall, Alex ;
Grimes, Matthew ;
Cipolla, Roberto .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2938-2946