Nonlinear Low-Rank Matrix Completion for Human Motion Recovery

被引:37
作者
Xia, Guiyu [1 ]
Sun, Huaijiang [2 ]
Chen, Beijia [2 ]
Liu, Qingshan [1 ]
Feng, Lei [3 ]
Zhang, Guoqing [4 ]
Hang, Renlong [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Informat & Control, Jiangsu Key Lab Big Data Anal Technol, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[3] Jinling Inst Technol, Sch Comp Engn, Nanjing 211169, Jiangsu, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Motion capture data; motion recovery; multiple kernel learning; geodesic exponential kernel; low-rank matrix completion; FACE RECOGNITION; MISSING MARKERS; REPRESENTATION; CAPTURE; REGULARIZATION; MINIMIZATION; MANIFOLDS; ALGORITHM; SIGNALS;
D O I
10.1109/TIP.2018.2812100
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human motion capture data has been widely used in many areas, but it involves a complex capture process and the captured data inevitably contains missing data due to the occlusions caused by the actor's body or clothing. Motion recovery, which aims to recover the underlying complete motion sequence from its degraded observation, still remains as a challenging task due to the nonlinear structure and kinematics property embedded in motion data. Low-rank matrix completion-based methods have shown promising performance in short-time-missing motion recovery problems. However, low-rank matrix completion, which is designed for linear data, lacks the theoretic guarantee when applied to the recovery of nonlinear motion data. To overcome this drawback, we propose a tailored nonlinear matrix completion model for human motion recovery. Within the model, we first learn a combined low-rank kernel via multiple kernel learning. By exploiting the learned kernel, we embed the motion data into a high dimensional Hilbert space where motion data is of desirable low-rank and we then use the low-rank matrix completion to recover motions. In addition, we add two kinematic constraints to the proposed model to preserve the kinematics property of human motion. Extensive experiment results and comparisons with five other state-of-the-art methods demonstrate the advantage of the proposed method.
引用
收藏
页码:3011 / 3024
页数:14
相关论文
共 45 条
  • [1] K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    Aharon, Michal
    Elad, Michael
    Bruckstein, Alfred
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) : 4311 - 4322
  • [2] [Anonymous], 2011, VRIPHYS
  • [3] [Anonymous], 2013, P INT C INF COMM SIG
  • [4] A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION
    Cai, Jian-Feng
    Candes, Emmanuel J.
    Shen, Zuowei
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) : 1956 - 1982
  • [5] Exact Matrix Completion via Convex Optimization
    Candes, Emmanuel J.
    Recht, Benjamin
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (06) : 717 - 772
  • [6] Performance animation from low-dimensional control signals
    Chai, JX
    Hodgins, JK
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2005, 24 (03): : 686 - 696
  • [7] Chen M, 2010, AUGMENTED LAGRANGE M, V9
  • [8] Chen X., 2014, P IEEE INT C IM PROC, P635
  • [9] Compressive Sensing via Nonlocal Low-Rank Regularization
    Dong, Weisheng
    Shi, Guangming
    Li, Xin
    Ma, Yi
    Huang, Feng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (08) : 3618 - 3632
  • [10] ElKoura G., 2003, ACM SIGGRAPH/Eurographics Symposium on Computer Animation, P110