Primal-dual affine-scaling algorithms fail for semidefinite programming

被引:4
作者
Muramatsu, M
Vanderbei, RJ
机构
[1] Sophia Univ, Chiyoda Ku, Tokyo 102, Japan
[2] Princeton Univ, Princeton, NJ 08544 USA
关键词
semidefinite programming; primal-dual interior;
D O I
10.1287/moor.24.1.149
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we give an example of a semidefinite programming problem in which primal-dual affine-scaling algorithms using the HRVW/KSH/M, MT, and AHO directions fail. We prove that each of these algorithms can generate a sequence converging to a non-optimal solution and that, for the AHO direction, even its associated continuous trajectory can converge to a non-optimal point. In contrast with these directions, we show that the primal-dual affine-scaling algorithm using the NT direction for the same semidefinite programming problem always generates a sequence converging to the optimal solution. Both primal and dual problems have interior feasible solutions and unique optimal solutions which satisfy strict complementarity, and are nondegenerate everywhere.
引用
收藏
页码:149 / 175
页数:27
相关论文
共 40 条
[1]   INTERIOR-POINT METHODS IN SEMIDEFINITE PROGRAMMING WITH APPLICATIONS TO COMBINATORIAL OPTIMIZATION [J].
ALIZADEH, F .
SIAM JOURNAL ON OPTIMIZATION, 1995, 5 (01) :13-51
[2]   Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results [J].
Alizadeh, F ;
Haeberly, JPA ;
Overton, ML .
SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (03) :746-768
[3]   Complementarity and nondegeneracy in semidefinite programming [J].
Alizadeh, F ;
Haeberly, JPA ;
Overton, ML .
MATHEMATICAL PROGRAMMING, 1997, 77 (02) :111-128
[4]  
ALIZADEH F, 1994, 659 NEW YORK U COUR
[5]   A VARIATION ON KARMARKAR ALGORITHM FOR SOLVING LINEAR-PROGRAMMING PROBLEMS [J].
BARNES, ER .
MATHEMATICAL PROGRAMMING, 1986, 36 (02) :174-182
[6]  
BORCHERS B, 1997, CSDP C LIBRARY SEMID
[7]  
DEKLERK E, 1996, 9642 DELFT U TECHNOL
[8]  
DIKIN II, 1967, DOKL AKAD NAUK SSSR+, V174, P747
[9]   ON A MATRIX GENERALIZATION OF AFFINE-SCALING VECTOR-FIELDS [J].
FAYBUSOVICH, L .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1995, 16 (03) :886-897
[10]  
Faybusovich L., 1994, LECT NOTES CONTROL I, V197, P237