Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient Electrocatalysts for Oxygen Reduction Reaction

被引:554
作者
Parvez, Khaled [1 ]
Yang, Shubin [1 ]
Hernandez, Yenny [1 ]
Winter, Andreas [2 ]
Turchanin, Andrey [2 ]
Feng, Xinliang [1 ]
Muellen, Klaus [1 ]
机构
[1] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[2] Univ Bielefeld, Fac Phys, D-33615 Bielefeld, Germany
关键词
graphene oxide; nitrogen-doped graphene; iron coordination; oxygen reduction reaction; stability; ACTIVE-SITES; CARBON; CATALYSTS; ELECTROREDUCTION; CONDUCTIVITY; STABILITY; CHLORIDE; ARRAYS; OXIDE;
D O I
10.1021/nn302674k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The high cost of platinum-based electrocatalysts for the oxygen reduction reaction (ORR) has hindered the practical application of fuel cells. Thanks to its unique chemical and structural properties, nitrogen-doped graphene (NG) is among the most promising metal-free catalysts for replacing platinum. In this work, we have developed a cost-effective synthesis of NG by using cyanamide as a nitrogen source and graphene oxide as a precursor, which led to high and controllable nitrogen contents (4.0% to 12.0%) after pyrolysis. NG thermally treated at 900 degrees C shows a stable methanol crossover effect, high current density (6.67 mA cm(-2)), and durability (similar to 87% after 10 000 cycles) when catalyzing ORR in alkaline solution : Further, iron (Fe) nanoparticles could be incorporated Into NG with the aid of Fe(III) chloride in the synthetic process. This allows one to examine the Influence of non noble metals on the. electrocatalytic performance. Remarkably, we found that NG supported with 5 wt %Fe nanoparticles displayed an excellent methanol crossover effect and high current density (8.20 mA cm(-2)) in an alkaline solution. Moreover, Fe-incorporated NG showed almost four electron transfer processes and superior stability in both alkaline (similar to 94%) and acidic (similar to 85%) solutions, which outperformed the platinum and NG-based catalysts.
引用
收藏
页码:9541 / 9550
页数:10
相关论文
共 48 条
[1]  
Bailey L. D., 1994, J MATER RES, V9, P3202
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Electrocatalytic reduction of oxygen by FePt alloy nanoparticles [J].
Chen, Wei ;
Kim, Jaemin ;
Sun, Shonheng ;
Chen, Shaowei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (10) :3891-3898
[4]   Oxygen Electroreduction Catalyzed by Gold Nanoclusters: Strong Core Size Effects [J].
Chen, Wei ;
Chen, Shaowei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (24) :4386-4389
[5]   Highly Active Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell Applications [J].
Chen, Zhu ;
Higgins, Drew ;
Tao, Haisheng ;
Hsu, Ryan S. ;
Chen, Zhongwei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (49) :21008-21013
[6]   Influence of nitrogen-containing precursors on the electrocatalytic activity of heat-treated Fe(OH)2 on carbon black for O2 reduction [J].
Cote, R ;
Lalande, G ;
Guay, D ;
Dodelet, JP ;
Denes, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (07) :2411-2418
[7]   Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells [J].
Feng, Leiyu ;
Yan, Yuanyuan ;
Chen, Yinguang ;
Wang, Lijun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (05) :1892-1899
[8]   High oxygen-reduction activity and durability of nitrogen-doped graphene [J].
Geng, Dongsheng ;
Chen, Ying ;
Chen, Yougui ;
Li, Yongliang ;
Li, Ruying ;
Sun, Xueliang ;
Ye, Siyu ;
Knights, Shanna .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :760-764
[9]   Electroreduction of Dioxygen for Fuel-Cell Applications: Materials and Challenges [J].
Gewirth, Andrew A. ;
Thorum, Matthew S. .
INORGANIC CHEMISTRY, 2010, 49 (08) :3557-3566
[10]   Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction - Part II. Kinetics of oxygen reduction [J].
Gojkovic, SL ;
Gupta, S ;
Savinell, RF .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 462 (01) :63-72