Regularity of Stable Solutions up to Dimension 7 in Domains of Double Revolution

被引:48
作者
Cabre, Xavier [1 ,2 ]
Ros-Oton, Xavier [2 ]
机构
[1] ICREA, Barcelona, Spain
[2] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
关键词
Regularity of stable solutions; Semilinear elliptic equations; ELLIPTIC PROBLEMS; MINIMIZERS;
D O I
10.1080/03605302.2012.697505
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the class of semi-stable positive solutions to semilinear equations - ?u = f(u) in a bounded domain O ? R n of double revolution, that is, a domain invariant under rotations of the first m variables and of the last n - m variables. We assume 2 = m = n - 2. When the domain is convex, we establish a priori L p and bounds for each dimension n, with p = 8 when n = 7. These estimates lead to the boundedness of the extremal solution of - ?u = ?f(u) in every convex domain of double revolution when n = 7. The boundedness of extremal solutions is known when n = 4 for any domain O, and in dimensions 5 = n = 9 in the radial case. Except for the radial case, our result is the first partial answer valid for all nonlinearities f in dimensions 5 = n = 9.
引用
收藏
页码:135 / 154
页数:20
相关论文
共 16 条
[1]  
[Anonymous], 1997, Rev. Mat. Univ. Complut. Madrid
[2]  
Cabre X., ARXIV12104487
[3]  
Cabre X., J FUNCT ANA IN PRESS
[4]  
Cabre X, 2007, PURE APPL MATH Q, V3, P801
[5]   Regularity of radial minimizers and extremal solutions of semilinear elliptic equations [J].
Cabre, Xavier ;
Capella, Antonio .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (02) :709-733
[6]   Regularity of Minimizers of Semilinear Elliptic Problems Up to Dimension 4 [J].
Cabre, Xavier .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (10) :1362-1380
[7]  
Dancer EN, 2004, DIFFER INTEGRAL EQU, V17, P961
[8]  
Dancer EN, 2009, P AM MATH SOC, V137, P1333
[9]  
DEFIGUEIREDO DG, 1982, J MATH PURE APPL, V61, P41
[10]  
Dupaigne L., 2011, Monographs and Surveys in Pure and Applied Mathematics, V143