Positive definite almost regular ternary quadratic forms over totally real number fields

被引:6
作者
Chan, Wai Kiu [1 ]
Icaza, Maria Ines [2 ]
机构
[1] Wesleyan Univ, Dept Math & Comp Sci, Middletown, CT 06459 USA
[2] Univ Talca, Inst Matemat & Fis, Talca, Chile
关键词
D O I
10.1112/blms/bdn085
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a totally real number field and let be the ring of integers in F. A totally positive quadratic form f over is said to be almost regular with k exceptions if f represents all but k elements in F that are represented by f locally everywhere. In this paper, we show that for a fixed positive integer k, there are only finitely many similarity classes of positive definite almost regular ternary quadratic forms over with at most k exceptions. This generalizes the corresponding finiteness result for positive definite ternary quadratic forms over by Watson (PhD Thesis, University College, London, 1953; Mathematika 1 (1954) 104-110).
引用
收藏
页码:1025 / 1037
页数:13
相关论文
共 17 条
[1]   Representations of integral quadratic forms over dyadic local fields [J].
Beli, Constantin N. .
ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 12 :100-112
[2]  
Chan IK, 2004, CONTEMP MATH, V344, P59
[3]   Finiteness results for regular definite ternary quadratic forms over Q(√5) [J].
Chan, Wai Kiu ;
Earnest, A. G. ;
Icaza, Maria Ines ;
Kim, Ji Young .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (04) :541-556
[4]   Definite regular quadratic forms over Fq[T] [J].
Chan, WK ;
Daniels, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (11) :3121-3131
[5]   On almost strong approximation for algebraic groups [J].
Chan, WK ;
Hsia, JS .
JOURNAL OF ALGEBRA, 2002, 254 (02) :441-461
[7]  
EARNEST AG, 1998, CONT MATH, V247, P17
[8]  
ESTES DR, 1993, NOVA J ALGEBRA GEOME, V2, P201
[9]  
HSIA JS, 1978, J REINE ANGEW MATH, V301, P132
[10]   There are 913 regular ternary forms [J].
Jagy, WC ;
Kaplansky, I ;
Schiemann, A .
MATHEMATIKA, 1997, 44 (88) :332-341