Suppression of plant defense responses by extracellular metabolites from Pseudomonas syringae pv. tabaci in Nicotiana benthamiana

被引:26
作者
Lee, Seonghee [1 ]
Yang, Dong Sik [1 ]
Uppalapati, Srinivasa Rao [1 ]
Sumner, Lloyd W. [1 ]
Mysore, Kirankumar S. [1 ]
机构
[1] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA
基金
美国国家科学基金会;
关键词
Nicotiana benthamiana; Pseudomonas syringae pv. tabaci; Extracellular metabolites; Hypersensitive response (HR); Stomata; Nonhost resistance; PROGRAMMED CELL-DEATH; PHYTOTOXIN CORONATINE; INNATE IMMUNITY; SALICYLIC-ACID; METHYL JASMONATE; III SECRETION; RESISTANCE; DISEASE; VIRULENCE; PATHOGENS;
D O I
10.1186/1471-2229-13-65
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Pseudomonas syringae pv. tabaci (Pstab) is the causal agent of wildfire disease in tobacco plants. Several pathovars of Pseudomonas syringae produce a phytotoxic extracellular metabolite called coronatine (COR). COR has been shown to suppress plant defense responses. Interestingly, Pstab does not produce COR but still actively suppresses early plant defense responses. It is not clear if Pstab produces any extracellular metabolites that actively suppress early defense during bacterial pathogenesis. Results: We found that the Pstab extracellular metabolite extracts (Pstab extracts) remarkably suppressed stomatal closure and nonhost hypersensitive response (HR) cell death induced by a nonhost pathogen, P. syringae pv. tomato T1 (Pst T1), in Nicotiana benthamiana. We also found that the accumulation of nonhost pathogens, Pst T1 and P. syringae pv. glycinea (Psgly), was increased in N. benthamiana plants upon treatment with Pstab extracts. The HR cell death induced by Pathogen-Associated Molecular Pattern (INF1), gene-for-gene interaction (Pto/AvrPto and Cf-9/AvrCf-9) and ethanol was not delayed or suppressed by Pstab extracts. We performed metabolite profiling to investigate the extracellular metabolites from Pstab using UPLC-qTOF-MS and identified 49 extracellular metabolites from the Pstab supernatant culture. The results from gene expression profiling of PR-1, PR-2, PR-5, PDF1.2, ABA1, COI1, and HSR203J suggest that Pstab extracellular metabolites may interfere with SA-mediated defense pathways. Conclusions: In this study, we found that Pstab extracts suppress plant defense responses such as stomatal closure and nonhost HR cell death induced by the nonhost bacterial pathogen Pst T1 in N. benthamiana.
引用
收藏
页数:13
相关论文
共 50 条
[41]   PRODUCTION OF PHYTOTOXIC METABOLITES BY PSEUDOMONAS SYRINGAE PV. ACTINIDIAE, THE CAUSAL AGENT OF BACTERIAL CANKER OF KIWIFRUIT [J].
Andolfi, A. ;
Ferrante, P. ;
Petriccione, M. ;
Cimmino, A. ;
Evidente, A. ;
Scortichini, M. .
JOURNAL OF PLANT PATHOLOGY, 2014, 96 (01) :169-175
[42]   Overexpression of rice OsLOL2 gene confers disease resistance in tobacco to Pseudomonas syringae pv. tabaci [J].
Khizar Hayat Bhatti .
Progress in Natural Science, 2008, (07) :807-812
[43]   Characterising the Genetic Diversity of Pseudomonas syringae pv. syringae Isolated from Rice and Wheat in Iran [J].
Dariush, Somayeh ;
Ebadi, Ali Akbar ;
Khoshkdaman, Maryam ;
Rabiei, Babak ;
Elahinia, Ali .
PLANT PROTECTION SCIENCE, 2012, 48 (04) :162-169
[44]   Impact of Phage Therapy on Pseudomonas syringae pv. syringae and Plant Microbiome Dynamics Through Coevolution and Field Experiments [J].
Papp-Rupar, Matevz ;
Grace, Emily R. ;
Korotania, Naina ;
Ciusa, Maria-Laura ;
Jackson, Robert W. ;
Rabiey, Mojgan .
ENVIRONMENTAL MICROBIOLOGY, 2025, 27 (03)
[45]   Defining essential processes in plant pathogenesis with Pseudomonas syringae pv. tomato DC3000 disarmed polymutants and a subset of key type III effectors [J].
Wei, Hai-Lei ;
Collmer, Alan .
MOLECULAR PLANT PATHOLOGY, 2018, 19 (07) :1779-1794
[46]   Genomic and pathogenic properties of Pseudomonas syringae pv. syringae strains isolated from apricot in East Azerbaijan province, Iran [J].
Vasebi, Yalda ;
Khakvar, Reza ;
Faghihi, Mohammad Mehdi ;
Vinatzer, Boris A. .
BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2019, 19
[47]   Induction and Suppression of PEN3 Focal Accumulation During Pseudomonas syringae pv. tomato DC3000 Infection of Arabidopsis [J].
Xin, Xiu-Fang ;
Nomura, Kinya ;
Underwood, William ;
He, Sheng Yang .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2013, 26 (08) :861-867
[48]   Genomic Islands of Pseudomonas syringae pv. tabaci 6605: Identification of PtaGI-1 as a Pathogenicity Island With Effector Genes and a Tabtoxin Cluster [J].
Watanabe, Yuta ;
Kunishi, Kotomi ;
Matsui, Hidenori ;
Sakata, Nanami ;
Noutoshi, Yoshiteru ;
Toyoda, Kazuhiro ;
Ichinose, Yuki .
MOLECULAR PLANT PATHOLOGY, 2025, 26 (05)
[49]   The Plant Pathogen Pseudomonas syringae pv. tomato Is Genetically Monomorphic and under Strong Selection to Evade Tomato Immunity [J].
Cai, Rongman ;
Lewis, James ;
Yan, Shuangchun ;
Liu, Haijie ;
Clarke, Christopher R. ;
Campanile, Francesco ;
Almeida, Nalvo F. ;
Studholme, David J. ;
Lindeberg, Magdalen ;
Schneider, David ;
Zaccardelli, Massimo ;
Setubal, Joao C. ;
Morales-Lizcano, Nadia P. ;
Bernal, Adriana ;
Coaker, Gitta ;
Baker, Christy ;
Bender, Carol L. ;
Leman, Scotland ;
Vinatzer, Boris A. .
PLOS PATHOGENS, 2011, 7 (08)
[50]   Genomic Analysis of the Kiwifruit Pathogen Pseudomonas syringae pv. actinidiae Provides Insight into the Origins of an Emergent Plant Disease [J].
McCann, Honour C. ;
Rikkerink, Erik H. A. ;
Bertels, Frederic ;
Fiers, Mark ;
Lu, Ashley ;
Rees-George, Jonathan ;
Andersen, Mark T. ;
Gleave, Andrew P. ;
Haubold, Bernhard ;
Wohlers, Mark W. ;
Guttman, David S. ;
Wang, Pauline W. ;
Straub, Christina ;
Vanneste, Joel ;
Rainey, Paul B. ;
Templeton, Matthew D. .
PLOS PATHOGENS, 2013, 9 (07)