Suppression of plant defense responses by extracellular metabolites from Pseudomonas syringae pv. tabaci in Nicotiana benthamiana

被引:26
作者
Lee, Seonghee [1 ]
Yang, Dong Sik [1 ]
Uppalapati, Srinivasa Rao [1 ]
Sumner, Lloyd W. [1 ]
Mysore, Kirankumar S. [1 ]
机构
[1] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA
基金
美国国家科学基金会;
关键词
Nicotiana benthamiana; Pseudomonas syringae pv. tabaci; Extracellular metabolites; Hypersensitive response (HR); Stomata; Nonhost resistance; PROGRAMMED CELL-DEATH; PHYTOTOXIN CORONATINE; INNATE IMMUNITY; SALICYLIC-ACID; METHYL JASMONATE; III SECRETION; RESISTANCE; DISEASE; VIRULENCE; PATHOGENS;
D O I
10.1186/1471-2229-13-65
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Pseudomonas syringae pv. tabaci (Pstab) is the causal agent of wildfire disease in tobacco plants. Several pathovars of Pseudomonas syringae produce a phytotoxic extracellular metabolite called coronatine (COR). COR has been shown to suppress plant defense responses. Interestingly, Pstab does not produce COR but still actively suppresses early plant defense responses. It is not clear if Pstab produces any extracellular metabolites that actively suppress early defense during bacterial pathogenesis. Results: We found that the Pstab extracellular metabolite extracts (Pstab extracts) remarkably suppressed stomatal closure and nonhost hypersensitive response (HR) cell death induced by a nonhost pathogen, P. syringae pv. tomato T1 (Pst T1), in Nicotiana benthamiana. We also found that the accumulation of nonhost pathogens, Pst T1 and P. syringae pv. glycinea (Psgly), was increased in N. benthamiana plants upon treatment with Pstab extracts. The HR cell death induced by Pathogen-Associated Molecular Pattern (INF1), gene-for-gene interaction (Pto/AvrPto and Cf-9/AvrCf-9) and ethanol was not delayed or suppressed by Pstab extracts. We performed metabolite profiling to investigate the extracellular metabolites from Pstab using UPLC-qTOF-MS and identified 49 extracellular metabolites from the Pstab supernatant culture. The results from gene expression profiling of PR-1, PR-2, PR-5, PDF1.2, ABA1, COI1, and HSR203J suggest that Pstab extracellular metabolites may interfere with SA-mediated defense pathways. Conclusions: In this study, we found that Pstab extracts suppress plant defense responses such as stomatal closure and nonhost HR cell death induced by the nonhost bacterial pathogen Pst T1 in N. benthamiana.
引用
收藏
页数:13
相关论文
共 50 条
[31]   The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana [J].
Metz, M ;
Dahlbeck, D ;
Morales, CQ ;
Al Sady, B ;
Clark, ET ;
Staskawicz, BJ .
PLANT JOURNAL, 2005, 41 (06) :801-814
[32]   Over-expression of CsGSTU promotes tolerance to the herbicide alachlor and resistance to Pseudomonas syringae pv. tabaci in transgenic tobacco [J].
Lo Cicero, L. ;
Catara, V. ;
Strano, C. P. ;
Bella, P. ;
Madesis, P. ;
Lo Piero, A. R. .
BIOLOGIA PLANTARUM, 2017, 61 (01) :169-177
[33]   Interactions between Pseudomonas syringae pv. tabaci and two rhizosphere hosts, Medicago sativa and Avena sativa [J].
Ghosh, S ;
Dickstein, R ;
Knight, TJ ;
Langston-Unkefer, PJ .
JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2001, 10 (02) :91-99
[34]   Functional analysis of the aefR mutation and identification of its binding site in Pseudomonas syringae pv. tabaci 11528 [J].
Yun, Sora ;
Lee, Jun Seung ;
Do, Mi Sol ;
Jeon, Young Ji ;
Cha, Ji Young ;
Baik, Hyung Suk .
ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2015, 47 (11) :938-945
[35]   Gac two-component system in Pseudomonas syringae pv. tabaci is required for virulence but not for hypersensitive reaction [J].
Marutani, Mizuri ;
Taguchi, Fumiko ;
Ogawa, Yujiro ;
Hossain, Md. Mijan ;
Inagaki, Yoshishige ;
Toyoda, Kazuhiro ;
Shiraishi, Tomonori ;
Ichinose, Yuki .
MOLECULAR GENETICS AND GENOMICS, 2008, 279 (04) :313-322
[36]   Chloroinconazide inhibits Pseudomonas syringae pv. tabaci causing tobacco wildfire disease by directly destroying bacteria and inducing oxidative damage [J].
Li, Fengwei ;
Wang, Ke ;
Zhu, Xin ;
Liu, Weina ;
Wu, Yanlin ;
Lv, Dashu ;
Han, Yanjing ;
Wang, Xiangchuan ;
Cheng, Daoquan ;
Chen, Tao ;
Xu, Chen ;
Sun, Xianchao .
PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, 2025, 213
[37]   Molecular Characterization and Taxonomic Assignment of Three Phage Isolates from a Collection Infecting Pseudomonas syringae pv. actinidiae and P. syringae pv. phaseolicola from Northern Italy [J].
Martino, Gabriele ;
Holtappels, Dominique ;
Vallino, Marta ;
Chiapello, Marco ;
Turina, Massimo ;
Lavigne, Rob ;
Wagemans, Jeroen ;
Ciuffo, Marina .
VIRUSES-BASEL, 2021, 13 (10)
[38]   Isolation and characterization of Pseudomonas syringae pv. porri from leek in Flanders [J].
Rombouts, S. ;
Van Vaerenbergh, J. ;
Volckaert, A. ;
Baeyen, S. ;
De Langhe, T. ;
Declercq, B. ;
Lavigne, R. ;
Maes, M. .
EUROPEAN JOURNAL OF PLANT PATHOLOGY, 2016, 144 (01) :185-198
[39]   Biophysical and proteomic analyses of Pseudomonas syringae pv. tomato DC3000 extracellular vesicles suggest adaptive functions during plant infection [J].
Janda, Martin ;
Rybak, Katarzyna ;
Krassini, Laura ;
Meng, Chen ;
Feitosa-Junior, Oseias ;
Stigliano, Egidio ;
Szulc, Beata ;
Sklenar, Jan ;
Menke, Frank L. H. ;
Malone, Jacob G. ;
Brachmann, Andreas ;
Klingl, Andreas ;
Ludwig, Christina ;
Robatzek, Silke .
MBIO, 2023, 14 (04)
[40]   Overexpression of rice OsLOL2 gene confers disease resistance in tobacco to Pseudomonas syringae pv. tabaci [J].
Bhatti, Khizar Hayat ;
Xu, Chunxiao ;
Wu, Jiahe ;
He, Chaozu .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2008, 18 (07) :807-812