Parameter Estimation in Hidden Markov Models With Intractable Likelihoods Using Sequential Monte Carlo

被引:12
|
作者
Yildirim, Sinan [1 ]
Singh, Sumeetpal S. [2 ]
Dean, Thomas [3 ]
Jasra, Ajay [4 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TH, Avon, England
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[3] Darktrace, Cambridge CB3 0FA, England
[4] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 119077, Singapore
基金
英国工程与自然科学研究理事会;
关键词
Approximate Bayesian computation; Maximum likelihood estimation; STOCHASTIC VOLATILITY; PARTICLE FILTER;
D O I
10.1080/10618600.2014.938811
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose sequential Monte Carlo-based algorithms for maximum likelihood estimation of the static parameters in hidden Markov models with an intractable likelihood using ideas from approximate Bayesian computation. The static parameter estimation algorithms are gradient-based and cover both offline and online estimation. We demonstrate their performance by estimating the parameters of three intractable models, namely the alpha-stable distribution, g-and-k distribution, and the stochastic volatility model with alpha-stable returns, using both real and synthetic data.
引用
收藏
页码:846 / 865
页数:20
相关论文
共 50 条
  • [21] ESTIMATION OF BOURGOYNE AND YOUNG MODEL COEFFICIENTS USING MARKOV CHAIN MONTE CARLO SIMULATION
    Formighieri, Sanjay
    de Freitas Filho, Paulo Jose
    2015 WINTER SIMULATION CONFERENCE (WSC), 2015, : 1172 - 1183
  • [22] Sequential Monte Carlo EM for multivariate probit models
    Moffa, Giusi
    Kuipers, Jack
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 72 : 252 - 272
  • [23] Hidden Markov Linear Regression Model and its Parameter Estimation
    Liu, Hefei
    Wang, Kunqjnu
    Li, Yong
    IEEE ACCESS, 2020, 8 : 187037 - 187042
  • [24] Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering
    Mbalawata, Isambi S.
    Sarkka, Simo
    Haario, Heikki
    COMPUTATIONAL STATISTICS, 2013, 28 (03) : 1195 - 1223
  • [25] Markov chain Monte Carlo methods for stochastic volatility models
    Chib, S
    Nardari, F
    Shephard, N
    JOURNAL OF ECONOMETRICS, 2002, 108 (02) : 281 - 316
  • [26] Bayesian Estimation of Agent-Based Models via Adaptive Particle Markov Chain Monte Carlo
    Lux, Thomas
    COMPUTATIONAL ECONOMICS, 2022, 60 (02) : 451 - 477
  • [27] Bayesian Estimation of Agent-Based Models via Adaptive Particle Markov Chain Monte Carlo
    Thomas Lux
    Computational Economics, 2022, 60 : 451 - 477
  • [28] Estimating DSGE Models using Multilevel Sequential Monte Carlo in Approximate Bayesian Computation
    Alaminos, David
    Ramirez, Ana
    Fernandez-Gamez, Manuel A.
    Becerra-Vicario, Rafael
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2020, 79 (01): : 21 - 25
  • [29] Sequential Monte Carlo methods for stochastic volatility models: a review
    Bishwal, Jaya P. N.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2010, 13 (06) : 619 - 635
  • [30] Online Motion Synthesis Using Sequential Monte Carlo
    Hamalainen, Perttu
    Eriksson, Sebastian
    Tanskanen, Esa
    Kyrki, Ville
    Lehtinen, Jaakko
    ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (04):