Parameter Estimation in Hidden Markov Models With Intractable Likelihoods Using Sequential Monte Carlo

被引:12
|
作者
Yildirim, Sinan [1 ]
Singh, Sumeetpal S. [2 ]
Dean, Thomas [3 ]
Jasra, Ajay [4 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TH, Avon, England
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[3] Darktrace, Cambridge CB3 0FA, England
[4] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 119077, Singapore
基金
英国工程与自然科学研究理事会;
关键词
Approximate Bayesian computation; Maximum likelihood estimation; STOCHASTIC VOLATILITY; PARTICLE FILTER;
D O I
10.1080/10618600.2014.938811
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose sequential Monte Carlo-based algorithms for maximum likelihood estimation of the static parameters in hidden Markov models with an intractable likelihood using ideas from approximate Bayesian computation. The static parameter estimation algorithms are gradient-based and cover both offline and online estimation. We demonstrate their performance by estimating the parameters of three intractable models, namely the alpha-stable distribution, g-and-k distribution, and the stochastic volatility model with alpha-stable returns, using both real and synthetic data.
引用
收藏
页码:846 / 865
页数:20
相关论文
共 50 条
  • [21] Accelerating sequential Monte Carlo with surrogate likelihoods
    Joshua J. Bon
    Anthony Lee
    Christopher Drovandi
    Statistics and Computing, 2021, 31
  • [22] Sequential Monte Carlo methods for static parameter estimation in random set models
    Vo, BN
    Vo, BT
    Singh, S
    PROCEEDINGS OF THE 2004 INTELLIGENT SENSORS, SENSOR NETWORKS & INFORMATION PROCESSING CONFERENCE, 2004, : 313 - 318
  • [23] Markov Chain Monte Carlo Simulation for Bayesian Hidden Markov Models
    Chan, Lay Guat
    Ibrahim, Adriana Irawati Nur Binti
    4TH INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2016), 2016, 1782
  • [24] Markov Chain Monte Carlo Methods for Parameter Estimation in Multidimensional Continuous Time Markov Switching Models
    Hahn, Markus
    Fruehwirth-Schnatter, Sylvia
    Sass, Joern
    JOURNAL OF FINANCIAL ECONOMETRICS, 2010, 8 (01) : 88 - 121
  • [25] Parameter estimation of spinning binary inspirals using Markov chain Monte Carlo
    van der Sluys, Marc
    Raymond, Vivien
    Mandel, Ilya
    Roever, Christian
    Christensen, Nelson
    Kalogera, Vicky
    Meyer, Renate
    Vecchio, Alberto
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (18)
  • [26] A Monte Carlo algorithm for optimal quantization in hidden Markov models
    Tadic, Vladislav B.
    Doucet, Arnaud
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 1121 - +
  • [27] An extension of reversible jump Markov Chain Monte Carlo in Hidden Markov Models
    Zhou, Feifei
    Chen, Jinwen
    Proceedings of the Fifth International Conference on Information and Management Sciences, 2006, 5 : 559 - 563
  • [28] Efficient Markov chain Monte Carlo sampling for hierarchical hidden Markov models
    Daniel Turek
    Perry de Valpine
    Christopher J. Paciorek
    Environmental and Ecological Statistics, 2016, 23 : 549 - 564
  • [29] Efficient Markov chain Monte Carlo sampling for hierarchical hidden Markov models
    Turek, Daniel
    de Valpine, Perry
    Paciorek, Christopher J.
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2016, 23 (04) : 549 - 564
  • [30] Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models
    Gao, Meng
    Zhang, Hui
    COMPUTERS & GEOSCIENCES, 2012, 44 : 70 - 77