Parameter Estimation in Hidden Markov Models With Intractable Likelihoods Using Sequential Monte Carlo

被引:13
作者
Yildirim, Sinan [1 ]
Singh, Sumeetpal S. [2 ]
Dean, Thomas [3 ]
Jasra, Ajay [4 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TH, Avon, England
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[3] Darktrace, Cambridge CB3 0FA, England
[4] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 119077, Singapore
基金
英国工程与自然科学研究理事会;
关键词
Approximate Bayesian computation; Maximum likelihood estimation; STOCHASTIC VOLATILITY; PARTICLE FILTER;
D O I
10.1080/10618600.2014.938811
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose sequential Monte Carlo-based algorithms for maximum likelihood estimation of the static parameters in hidden Markov models with an intractable likelihood using ideas from approximate Bayesian computation. The static parameter estimation algorithms are gradient-based and cover both offline and online estimation. We demonstrate their performance by estimating the parameters of three intractable models, namely the alpha-stable distribution, g-and-k distribution, and the stochastic volatility model with alpha-stable returns, using both real and synthetic data.
引用
收藏
页码:846 / 865
页数:20
相关论文
共 32 条
[1]  
Andrieu C, 2005, IEEE DECIS CONTR P, P332
[2]  
[Anonymous], 2004, Feynman-Kac formulae, DOI 10.1007 978-1-4684-9393-1 // / /
[3]  
[Anonymous], 2005, SPR S STAT
[4]  
[Anonymous], 11053655 ARXIV
[5]  
[Anonymous], 2011, CUEDFINFENGTR668 ENG
[6]  
Calvet C., 2012, 236 HEC
[7]   Convolution Particle Filter for Parameter Estimation in General State-Space Models [J].
Campillo, Fabien ;
Rossi, Vivien .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2009, 45 (03) :1063-1072
[8]  
Cappe O, 2009, P IEE WORKSH STAT SI
[9]   METHOD FOR SIMULATING STABLE RANDOM-VARIABLES [J].
CHAMBERS, JM ;
MALLOWS, CL ;
STUCK, BW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1976, 71 (354) :340-344
[10]   A sequential particle filter method for static models [J].
Chopin, N .
BIOMETRIKA, 2002, 89 (03) :539-551