Parameter Estimation in Hidden Markov Models With Intractable Likelihoods Using Sequential Monte Carlo

被引:12
|
作者
Yildirim, Sinan [1 ]
Singh, Sumeetpal S. [2 ]
Dean, Thomas [3 ]
Jasra, Ajay [4 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TH, Avon, England
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[3] Darktrace, Cambridge CB3 0FA, England
[4] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 119077, Singapore
基金
英国工程与自然科学研究理事会;
关键词
Approximate Bayesian computation; Maximum likelihood estimation; STOCHASTIC VOLATILITY; PARTICLE FILTER;
D O I
10.1080/10618600.2014.938811
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose sequential Monte Carlo-based algorithms for maximum likelihood estimation of the static parameters in hidden Markov models with an intractable likelihood using ideas from approximate Bayesian computation. The static parameter estimation algorithms are gradient-based and cover both offline and online estimation. We demonstrate their performance by estimating the parameters of three intractable models, namely the alpha-stable distribution, g-and-k distribution, and the stochastic volatility model with alpha-stable returns, using both real and synthetic data.
引用
收藏
页码:846 / 865
页数:20
相关论文
共 50 条
  • [1] Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Dean, Thomas A.
    Singh, Sumeetpal S.
    Jasra, Ajay
    Peters, Gareth W.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (04) : 970 - 987
  • [2] Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Elena Ehrlich
    Ajay Jasra
    Nikolas Kantas
    Methodology and Computing in Applied Probability, 2015, 17 : 315 - 349
  • [3] Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Ehrlich, Elena
    Jasra, Ajay
    Kantas, Nikolas
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2015, 17 (02) : 315 - 349
  • [4] SEQUENTIAL MONTE CARLO SMOOTHING FOR GENERAL STATE SPACE HIDDEN MARKOV MODELS
    Douc, Randal
    Garivier, Aurelien
    Moulines, Eric
    Olsson, Jimmy
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (06) : 2109 - 2145
  • [5] Sequential Monte Carlo without likelihoods
    Sisson, S. A.
    Fan, Y.
    Tanaka, Mark M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (06) : 1760 - 1765
  • [6] Sequential Monte Carlo Smoothing with Parameter Estimation
    Yang, Biao
    Stroud, Jonathan R.
    Huerta, Gabriel
    BAYESIAN ANALYSIS, 2018, 13 (04): : 1133 - 1157
  • [7] Estimation of agent-based models using sequential Monte Carlo methods
    Lux, Thomas
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2018, 91 : 391 - 408
  • [8] Filtering and Estimation for a Class of Stochastic Volatility Models with Intractable Likelihoods
    Vankov, Emilian R.
    Guindani, Michele
    Ensor, Katherine B.
    BAYESIAN ANALYSIS, 2019, 14 (01): : 29 - 52
  • [9] Likelihood inference for Markov switching GARCH(1,1) models using sequential Monte Carlo
    Wee, Damien C. H.
    Chen, Feng
    Dunsmuir, William T. M.
    ECONOMETRICS AND STATISTICS, 2022, 21 : 50 - 68
  • [10] Computational issues in parameter estimation for hidden Markov models with template model builder
    Bacri, Timothee
    Berentsen, Geir D.
    Bulla, Jan
    Stove, Bard
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (18) : 3421 - 3457