Target alignment method of inertial confinement fusion facility based on position estimation

被引:0
|
作者
Lin, Weiheng [1 ,2 ]
Zhu, Jianqiang [1 ]
Liu, Zhigang [1 ]
Pang, Xiangyang [1 ]
Zhou, Yang [1 ]
Cui, Wenhui [1 ,2 ]
Dong, Ziming [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Joint Lab High Power Laser & Phys, Shanghai, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Inertial con finement fusion; Target alignment; Laser system; Position estimation; Redundant measurement; KALMAN FILTER; SYSTEM; DESIGN;
D O I
10.1016/j.net.2022.05.002
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Target alignment technology is one of the most critical technologies in laser fusion experiments and is an important technology related to the success of laser fusion experiments. In this study, by combining the open-loop and closed-loop errors of the target alignment, the Kalman state observer is used to estimate the position of the target, which improves the observation precision of the target alignment. Then the optimized result is used to guide the alignment of the target. This method can greatly optimize the target alignment error and reduce uncertainty. With the improvement of the target alignment precision, it will greatly improve the reliability and repeatability of the experiments' results, thereby improving the success rate of the experiments.(c) 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:3703 / 3716
页数:14
相关论文
共 50 条
  • [41] An improved deconvolution method for X-ray coded imaging in inertial confinement fusion
    Zhao Zong-Qing
    He Wei-Hua
    Wang Jian
    Hao Yi-Dan
    Cao Lei-Feng
    Gu Yu-Qiu
    Zhang Bao-Han
    CHINESE PHYSICS B, 2013, 22 (10)
  • [42] A concept of an FEL based energy driver for commercial inertial confinement fusion reactor
    Saldin, EL
    Schneidmiller, EA
    Ulyanov, YN
    Yurkov, MV
    FUSION ENGINEERING AND DESIGN, 1999, 44 : 341 - 346
  • [43] Diagnostic technique for measuring fusion reaction rate for inertial confinement fusion experiments at Shen Guang-III prototype laser facility
    王峰
    彭晓世
    康洞国
    刘慎业
    徐涛
    ChinesePhysicsB, 2013, 22 (11) : 405 - 409
  • [44] Fabrication of hollow glass microspheres for inertial confinement fusion targets by depolymerizable mandrel method
    Xu, Wei
    Wang, Tao
    He, Zhibing
    Wu, Zhangwen
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2015, 27 (06):
  • [45] An improved deconvolution method for X-ray coded imaging in inertial confinement fusion
    赵宗清
    何卫华
    王剑
    郝轶丹
    曹磊峰
    谷渝秋
    张保汉
    ChinesePhysicsB, 2013, 22 (10) : 285 - 290
  • [46] Improvement of angular velocity and position estimation in gyro-free inertial navigation based on vision aid equipment
    Dehghani, Mehdi
    Kharrati, Hamed
    Seyedarabi, Hadi
    Baradarannia, Mahdi
    IET COMPUTER VISION, 2018, 12 (03) : 261 - 275
  • [47] TRIDENT - A VERSATILE HIGH-POWER ND-GLASS LASER FACILITY FOR INERTIAL CONFINEMENT FUSION EXPERIMENTS
    MONCUR, NK
    JOHNSON, RP
    WATT, RG
    GIBSON, RB
    APPLIED OPTICS, 1995, 34 (21): : 4274 - 4283
  • [48] A method for diagnosing the implosion symmetry in inertial confinement fusion with wide-angle VISAR
    Yuji, Wu
    Zanyang, Guan
    Qing, Zhang
    Longfei, Jing
    Kuan, Ren
    Juxi, Liang
    Xudan, Chen
    Yulong, Li
    Feng, Wang
    NUCLEAR FUSION, 2025, 65 (02)
  • [49] Research and Development of Compact Neutron Sources based on Inertial Electrostatic Confinement Fusion
    Masuda, Kai
    Takamatsu, Teruhisa
    Yoshikawa, Kiyoshi
    Misawa, Tsuyoshi
    Shiroya, Seiji
    Takahashi, Yoshiyuki
    Fujimoto, Takeshi
    Nakagawa, Tomoya
    Kajiwara, Taiju
    Nagasaki, Kazunobu
    APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY, 2009, 1099 : 587 - +
  • [50] Bayesian batch optimization for molybdenum versus tungsten inertial confinement fusion double shell target design
    Vazirani, Nomita N.
    Sacks, Ryan
    Haines, Brian M.
    Grosskopf, Michael J.
    Stark, David J.
    Bradley, Paul A.
    STATISTICAL ANALYSIS AND DATA MINING, 2024, 17 (03)