PARAMETER-UNIFORM FINITE ELEMENT METHOD FOR TWO-PARAMETER SINGULARLY PERTURBED PARABOLIC REACTION-DIFFUSION PROBLEMS

被引:39
作者
Kadalbajoo, M. K. [1 ]
Yadaw, Arjun Singh [2 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
[2] Lund Univ, Ctr Math Sci, SE-22100 Lund, Sweden
关键词
Singular perturbation; boundary layer; Shishkin mesh; finite element method; reaction-diffusion; DIFFERENCE-SCHEMES; CONVERGENCE; MESH;
D O I
10.1142/S0219876212500478
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, parameter-uniform numerical methods for a class of singularly perturbed one-dimensional parabolic reaction-diffusion problems with two small parameters on a rectangular domain are studied. Parameter-explicit theoretical bounds on the derivatives of the solutions are derived. The method comprises a standard implicit finite difference scheme to discretize in temporal direction on a uniform mesh by means of Rothe's method and finite element method in spatial direction on a piecewise uniform mesh of Shishkin type. The method is shown to be unconditionally stable and accurate of order O(N-2(ln N)(2) + Delta t). Numerical results are given to illustrate the parameter-uniform convergence of the numerical approximations.
引用
收藏
页数:16
相关论文
共 28 条
[1]  
[Anonymous], 1990, SINGULAR PERTURBATIO
[2]  
Bakhvalov N. S., 1969, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, V9, P841
[3]  
BOBISUD L, 1968, ARCH RATION MECH AN, V27, P385
[4]   A uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems [J].
Clavero, C ;
Jorge, JC ;
Lisbona, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 154 (02) :415-429
[5]  
Doolan EP., 1980, Uniform Numerical Methods for Problems with Initial and Boundary Layers
[6]  
Farrell P., 2000, Robust Computational Techniques for Boundary Layers
[7]  
GARTLAND EC, 1988, MATH COMPUT, V51, P631, DOI 10.1090/S0025-5718-1988-0935072-1
[8]  
KELLOGG RB, 1978, MATH COMPUT, V32, P1025, DOI 10.1090/S0025-5718-1978-0483484-9
[9]   Uniform pointwise convergence of difference schemes for convection-diffusion problems on layer-adapted meshes [J].
Kopteva, N .
COMPUTING, 2001, 66 (02) :179-197
[10]   Analysis of a finite-difference scheme for a singularly perturbed problem with two small parameters [J].
Linss, T ;
Roos, HG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (02) :355-366