DILATION OF ARBITRARY SYMMETRIC QUANTUM DYNAMICAL SEMIGROUPS ON B(H)

被引:1
作者
Das, Biswarup [1 ]
机构
[1] Indian Stat Inst, Kolkata, India
关键词
Quantum stochastics; quantum dynamical semigroups; dilation; OPERATOR-ALGEBRAS;
D O I
10.1142/S0219025712500178
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of Hudson-Parthasarathy dilation of a quantum dynamical semigroup on B(H), which is symmetric with respect to the canonical normal trace on it.
引用
收藏
页数:11
相关论文
共 16 条
[1]   On the structure of Markov flows [J].
Accardi, L ;
Kozyrev, SV .
CHAOS SOLITONS & FRACTALS, 2001, 12 (14-15) :2639-2655
[2]  
Accardi L., 1982, Publ. Res. Inst. Math. Sci, V18, P97, DOI [10.2977/prims/1195184017, DOI 10.2977/PRIMS/1195184017]
[3]  
[Anonymous], 2007, Cambridge Tracts in Mathematics
[4]  
[Anonymous], 1992, MONOGRAPHS MATH
[5]  
Bratteli Ola, 1987, OPERATOR ALGEBRAS QU, V1, DOI DOI 10.1007/978-3-662-02520-8
[6]   Sufficient conditions for conservativity of minimal quantum dynamical semigroups [J].
Chebotarev, AM ;
Fagnola, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 153 (02) :382-404
[7]   CO-HOMOLOGY OF OPERATOR-ALGEBRAS AND QUANTUM DYNAMICAL SEMIGROUPS [J].
CHRISTENSEN, E ;
EVANS, DE .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1979, 20 (OCT) :358-368
[8]   Derivations as square roots of Dirichlet forms [J].
Cipriani, F ;
Sauvageot, JL .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (01) :78-120
[9]  
EVANS DE, 1977, COMM DUBLIN I ADV A
[10]   Solving quantum stochastic differential equations with unbounded coefficients [J].
Fagnola, F ;
Wills, SJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 198 (02) :279-310