Video Based Pedestrian Detection and Tracking at Night-time

被引:0
作者
Lee, Geun-Hoo [1 ]
Kim, Gyu-Yeong [2 ]
Song, Jong-Kwan [1 ]
Ince, Omer Faruk [1 ]
Park, Jangsik [1 ]
机构
[1] Kyungsung Univ, Dept Elect Engn, Daeyeon3 dong,110-1, Busan 608736, South Korea
[2] Hanwul Multimedia Commun Co Ltd, R&D Lab, 1012-1015,Ace High Tech21,1470 U Dong, Busan, South Korea
来源
2017 10TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTIONS (HSI) | 2017年
关键词
Pedestrian tracking; Particle filter; Train-learning-detection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is an approach for pedestrian detection and tracking with infrared imagery. The detection phase is performed by AdaBoost algorithm based on Haar-like features. AdaBoost classifier is trained with datasets generated from infrared images. The number of negative images used for training with AdaBoost algorithm is 3000. For positive training, 1000 samples are used After detecting the pedestrian with AdaBoost classifier, we proposed the Tracking-Learning-Detection ( TLD) frameworks tracking strategies. TLD frameworks are preferred in this study because of its high accuracy rate and computation speed Tracking performance comparison is made between TLD and particle filtering. Results prove that TLD performs a higher tracking rate than particle filtering.
引用
收藏
页码:69 / 72
页数:4
相关论文
共 14 条
[11]  
Ozuysal M., 2007, CVPR
[12]  
Viola P., 2001, IEEE ICCV WORKSH STA
[13]  
Xia D., 2010, 2010 INT C COMP APPL, V12, P140
[14]  
김익순, 2011, [The Journal of The Korea Institute of Electronic Communication Sciences, 한국전자통신학회 논문지], V6, P789