Accelerated Monte Carlo simulations with restricted Boltzmann machines

被引:196
作者
Huang, Li [1 ]
Wang, Lei [2 ,3 ]
机构
[1] Sci & Technol Surface Phys & Chem Lab, POB 9-35, Jiangyou 621908, Peoples R China
[2] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
关键词
CLASSICAL DEGREES; ALGORITHM; TRANSITION; MODEL;
D O I
10.1103/PhysRevB.95.035105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Despite their exceptional flexibility and popularity, Monte Carlo methods often suffer from slow mixing times for challenging statistical physics problems. We present a general strategy to overcome this difficulty by adopting ideas and techniques from the machine learning community. We fit the unnormalized probability of the physical model to a feed-forward neural network and reinterpret the architecture as a restricted Boltzmann machine. Then, exploiting its feature detection ability, we utilize the restricted Boltzmann machine to propose efficient Monte Carlo updates to speed up the simulation of the original physical system. We implement these ideas for the Falicov-Kimball model and demonstrate an improved acceptance ratio and autocorrelation time near the phase transition point.
引用
收藏
页数:6
相关论文
共 66 条
[21]   Interaction-Tuned Anderson versus Mott Localization [J].
Antipov, Andrey E. ;
Javanmard, Younes ;
Ribeiro, Pedro ;
Kirchner, Stefan .
PHYSICAL REVIEW LETTERS, 2016, 117 (14)
[22]   Critical Exponents of Strongly Correlated Fermion Systems from Diagrammatic Multiscale Methods [J].
Antipov, Andrey E. ;
Gull, Emanuel ;
Kirchner, Stefan .
PHYSICAL REVIEW LETTERS, 2014, 112 (22)
[23]   Machine learning for many-body physics: The case of the Anderson impurity model [J].
Arsenault, Louis-Francois ;
Lopez-Bezanilla, Alejandro ;
von Lilienfeld, O. Anatole ;
Millis, Andrew J. .
PHYSICAL REVIEW B, 2014, 90 (15)
[24]   The ALPS project release 2.0: open source software for strongly correlated systems [J].
Bauer, B. ;
Carr, L. D. ;
Evertz, H. G. ;
Feiguin, A. ;
Freire, J. ;
Fuchs, S. ;
Gamper, L. ;
Gukelberger, J. ;
Gull, E. ;
Guertler, S. ;
Hehn, A. ;
Igarashi, R. ;
Isakov, S. V. ;
Koop, D. ;
Ma, P. N. ;
Mates, P. ;
Matsuo, H. ;
Parcollet, O. ;
Pawlowski, G. ;
Picon, J. D. ;
Pollet, L. ;
Santos, E. ;
Scarola, V. W. ;
Schollwoeck, U. ;
Silva, C. ;
Surer, B. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Wall, M. L. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[25]   Sign-Problem-Free Quantum Monte Carlo of the Onset of Antiferromagnetism in Metals [J].
Berg, Erez ;
Metlitski, Max A. ;
Sachdev, Subir .
SCIENCE, 2012, 338 (6114) :1606-1609
[26]   MONTE-CARLO CALCULATIONS OF COUPLED BOSON-FERMION SYSTEMS .1. [J].
BLANKENBECLER, R ;
SCALAPINO, DJ ;
SUGAR, RL .
PHYSICAL REVIEW D, 1981, 24 (08) :2278-2286
[27]  
Carleo G., ARXIV160602318
[28]   Quantum Monte Carlo methods for nuclear physics [J].
Carlson, J. ;
Gandolfi, S. ;
Pederiva, F. ;
Pieper, Steven C. ;
Schiavilla, R. ;
Schmidt, K. E. ;
Wiringa, R. B. .
REVIEWS OF MODERN PHYSICS, 2015, 87 (03) :1067-1118
[29]  
Carrasquilla J., ARXIV160501735
[30]   Fermion bag approach to lattice field theories [J].
Chandrasekharan, Shailesh .
PHYSICAL REVIEW D, 2010, 82 (02)