Cruising in ceramics-discovering new structures for all-solid-state batteries-fundamentals, materials, and performances

被引:43
作者
Kammampata, Sanoop Palakkathodi [1 ]
Thangadurai, Venkataraman [1 ]
机构
[1] Univ Calgary, Dept Chem, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Batteries; Cationic conductors; Crystal structures; Electrolytes; Ionic conductivities; LITHIUM-ION CONDUCTIVITY; CRYSTAL-STRUCTURE; CATHODE MATERIAL; ELECTROCHEMICAL PROPERTIES; TRANSPORT-PROPERTIES; ELECTRICAL-CONDUCTIVITY; SECONDARY BATTERIES; CONVERSION REACTION; ELECTRODE MATERIAL; STUFFED GARNETS;
D O I
10.1007/s11581-017-2372-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Energy storage research has drawn much attention recently due to increasing demand for carbon neutral electrical energy from renewable energy sources such as solar, wind, and hydrothermal. Various electrochemical energy storage and conversion technologies are being considered for their integration into smart grid systems, of which batteries seem to play a vital role due to their wide range of energy densities. In this review, we provide the current status and recent advances in solid-state (ceramic) electrolytes based on inorganic compounds for all-solid-state batteries. This paper is specifically focused on the fundamentals, materials, and performances of solid electrolytes in batteries. A wide spectrum of inorganic solid-state electrolytes is presented in terms of their chemical composition, crystal structure, and ion conduction mechanism. Furthermore, the advantages and main issues associated with different types of inorganic solid electrolytes, including beta-alumina, NASICON and LISICON-type, perovskites, and garnet-type for all-solid-state batteries are presented. Among these solid electrolytes, Zr and Ta-based Li-stuffed garnets exhibit high Li-ion conductivity, electrochemical stability window (up to 6 V/Li at room temperature), and chemical stability against reaction with molten elemental Li. However, their stability under humidity and carbon dioxide should be improved to decrease the fabrication and operational costs.
引用
收藏
页码:639 / 660
页数:22
相关论文
共 156 条
[1]   Fast Li-circle plus conducting ceramic electrolytes [J].
Adachi, GY ;
Imanaka, N ;
Aono, H .
ADVANCED MATERIALS, 1996, 8 (02) :127-+
[2]   Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 [J].
Allen, J. L. ;
Wolfenstine, J. ;
Rangasamy, E. ;
Sakamoto, J. .
JOURNAL OF POWER SOURCES, 2012, 206 :315-319
[3]   STRUCTURAL ASPECTS AND HIGH PARTIAL CU+-IONIC CONDUCTIVITY IN COMPOUNDS OF CUTEX (X=CL,BR,I) [J].
ALPEN, UV ;
FENNER, J ;
MARCOLL, JD ;
RABENAU, A .
ELECTROCHIMICA ACTA, 1977, 22 (07) :801-803
[4]   Lithium insertion into rhombohedral Li3Fe2(PO4)3 [J].
Andersson, AS ;
Kalska, B ;
Eyob, P ;
Aernout, D ;
Häggström, L ;
Thomas, JO .
SOLID STATE IONICS, 2001, 140 (1-2) :63-70
[5]  
[Anonymous], 2016, BP STAT REV WORLD EN
[6]  
[Anonymous], 2017, World population projected to reach 9.8 billion in 2050
[7]  
[Anonymous], 2016, WORLD EN OUTL
[8]   HIGH LI+ CONDUCTING CERAMICS [J].
AONO, H ;
IMANAKA, N ;
ADACHI, G .
ACCOUNTS OF CHEMICAL RESEARCH, 1994, 27 (09) :265-270
[9]   SYNTHESIS AND ELECTROCHEMICAL PROPERTIES OF LITHIUM ION CONDUCTIVE GLASS, LI3PO4-LI2S-SIS2 [J].
AOTANI, N ;
IWAMOTO, K ;
TAKADA, K ;
KONDO, S .
SOLID STATE IONICS, 1994, 68 (1-2) :35-39
[10]   Lithium mobility in titanium based Nasicon Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 materials followed by NMR and impedance spectroscopy [J].
Arbi, K. ;
Rojo, J. M. ;
Sanz, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (13-15) :4215-4218