Weak Galerkin and Continuous Galerkin Coupled Finite Element Methods for the Stokes-Darcy Interface Problem

被引:8
作者
Peng, Hui [1 ]
Zhai, Qilong [2 ]
Zhang, Ran [1 ]
Zhang, Shangyou [3 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100875, Peoples R China
[3] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
中国博士后科学基金;
关键词
Finite element methods; weak Galerkin finite element methods; weak gradient; Stokes equations; Darcy's equation; DOMAIN DECOMPOSITION METHODS; FLUID-FLOW; BEAVERS; SURFACE; JOSEPH; SCHEME;
D O I
10.4208/cicp.OA-2019-0122
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a model of coupled free and porous media flow governed by Stokes equation and Darcy's law with the Beavers-Joseph-Saffman interface condition. In this paper, we propose a new numerical approach for the Stokes-Darcy system. The approach employs the classical finite element method for the Darcy region and the weak Galerkin finite element method for the Stokes region. We construct corresponding discrete scheme and prove its well-posedness. The estimates for the corresponding numerical approximation are derived. Finally, we present some numerical experiments to validate the efficiency of the approach for solving this problem.
引用
收藏
页码:1147 / 1175
页数:29
相关论文
共 49 条
[1]  
Adams R.A., 2003, Sobolev spaces
[2]   A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium [J].
Arbogast, Todd ;
Brunson, Dana S. .
COMPUTATIONAL GEOSCIENCES, 2007, 11 (03) :207-218
[3]   Homogenization of a Darcy-Stokes system modeling vuggy porous media [J].
Arbogast, Todd ;
Lehr, Heather L. .
COMPUTATIONAL GEOSCIENCES, 2006, 10 (03) :291-302
[4]   A discretization and multigrid solver for a Darcy-Stokes system of three dimensional vuggy porous media [J].
Arbogast, Todd ;
Gomez, Mario San Martin .
COMPUTATIONAL GEOSCIENCES, 2009, 13 (03) :331-348
[5]   BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL [J].
BEAVERS, GS ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1967, 30 :197-&
[6]   Stokes-Darcy boundary integral solutions using preconditioners [J].
Boubendir, Yassine ;
Tlupova, Svetlana .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (23) :8627-8641
[7]  
Brenner SC, 2004, MATH COMPUT, V73, P1067
[8]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[9]  
Cao YZ, 2014, MATH COMPUT, V83, P1617
[10]   FINITE ELEMENT APPROXIMATIONS FOR STOKES-DARCY FLOW WITH BEAVERS-JOSEPH INTERFACE CONDITIONS [J].
Cao, Yanzhao ;
Gunzburger, Max ;
Hu, Xiaolong ;
Hua, Fei ;
Wang, Xiaoming ;
Zhao, Weidong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) :4239-4256