Compact homogeneous manifolds of dimension at most 7 up to a finite covering

被引:2
作者
Gorbatsevich, V. V. [1 ]
机构
[1] Russian State Technol Univ MATI, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
homogeneous manifold; finite covering; natural fibration; SEMISIMPLE FUNDAMENTAL GROUP; SPACES;
D O I
10.1070/IM2012v076n04ABEH002600
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a classification of all compact homogeneous manifolds of dimension at most 7 up to a finite covering. Earlier classifications of this kind up to dimension 6 are obtained by a unified method. The main focus of the paper is on the case of dimension 7.
引用
收藏
页码:669 / 680
页数:12
相关论文
共 21 条
[1]  
[Anonymous], TOPOLOGY TRANSITIVE
[2]  
[Anonymous], 1993, LIE GROUPS LIE ALGEB
[3]   EXPOSITION OF STRUCTURE OF SOLVMANIFOLDS .1. ALGEBRAIC THEORY [J].
AUSLANDER, L .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (02) :227-261
[4]  
Bermbach F., 1991, THESIS U MAINZ MAINZ
[5]  
Gorbacevic V. V., 1983, ANN GLOB ANAL GEOM, V1, P103
[6]  
Gorbatsevich V. V., 1978, RUSS MATH SURV, V33, p[161, 153], DOI 10.1070/RM1978v033n03ABEH002474
[7]  
Gorbatsevich V. V., 1980, GEOMETRIC METHODS PR, P37
[8]  
Gorbatsevich V. V., 1981, GEOMETRICHESKIE METO, P71
[9]  
Gorbatsevich V. V., 1991, QUESTIONS GROUP THEO, P88
[10]  
Gorbatsevich V. V., 1981, T MOSK MATEM OVA, V43, p[116, 129]