Convergence of homogeneous manifolds

被引:26
作者
Lauret, Jorge [1 ,2 ]
机构
[1] Univ Nacl Cordoba, FAMAF, RA-5000 Cordoba, Argentina
[2] Univ Nacl Cordoba, CIEM, RA-5000 Cordoba, Argentina
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2012年 / 86卷
关键词
RICCI FLOW; EINSTEIN SOLVMANIFOLDS; LIE-GROUPS; NILMANIFOLDS; 7-MANIFOLDS; SPACES; CURVATURE; METRICS;
D O I
10.1112/jlms/jds023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study in this paper three natural notions of convergence of homogeneous manifolds, namely infinitesimal, local and pointed, and their relationship with a fourth one, which takes into account only the underlying algebraic structure of the homogeneous manifold and is indeed much more tractable. Along the way, we introduce a subset of the variety of Lie algebras which parameterizes the space of all n-dimensional simply connected homogeneous spaces with q-dimensional isotropy, providing a framework which is very advantageous to approach variational problems for curvature functionals as well as geometric evolution equations on homogeneous manifolds.
引用
收藏
页码:701 / 727
页数:27
相关论文
共 38 条
[1]  
Alekseevsky DV., 1975, FUNCTIONAL ANAL APPL, V9, P5, DOI DOI 10.1007/BF01075445
[2]   INFINITE FAMILY OF DISTINCT 7-MANIFOLDS ADMITTING POSITIVELY CURVED RIEMANNIAN STRUCTURES [J].
ALOFF, S ;
WALLACH, NR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (01) :93-97
[3]   Ricci Flow in Riemannian Geometry: A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem [J].
Andrews, Ben ;
Hopper, Christopher .
RICCI FLOW IN RIEMANNIAN GEOMETRY: A COMPLETE PROOF OF THE DIFFERENTIABLE 1/4-PINCHING SPHERE THEOREM, 2011, 2011 :1-+
[4]  
[Anonymous], 1999, Metric structures for Riemannian and nonRiemannian spaces
[5]  
[Anonymous], 1978, GRADUATE STUDIES MAT
[6]  
Besse A. L., 1987, ERGEBNISSE MATH IHRE, DOI [10.1007/978-3-540-74311-8, DOI 10.1007/978-3-540-74311-8]
[7]   A variational approach for compact homogeneous Einstein manifolds [J].
Böhm, C ;
Wang, M ;
Ziller, W .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (04) :681-733
[8]  
Brocker T., 1985, Grad. Texts in Math, V98
[9]  
CHOW B, 2007, AM MATH SOC MATH SUR, V135
[10]  
Eberlein P, 2008, CONTEMP MATH, V469, P167