ZEROS OF BRAUER CHARACTERS

被引:0
作者
Wang Huiqun [1 ]
Chen Xiaoyou [2 ]
Zeng Jiwen [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Henan Univ Technol, Coll Sci, Zhengzhou 450001, Peoples R China
关键词
vanishing regular element; Brauer character; AUTOMORPHISM-GROUPS; ORBITS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors obtain a sufficient condition to determine whether an element is a vanishing regular element of some Brauer character. More precisely, let G be a finite group and p be a fixed prime, and H = G'O-p' (G); if g is an element of G(0) - H-0 with o(gH) coprime to the number of irreducible p-Brauer characters of G, then there always exists a nonlinear irreducible p-Brauer character which vanishes on g. The authors also show in this note that the sums of certain irreducible p-Brauer characters take the value zero on every element of G(0) - H-0.
引用
收藏
页码:1435 / 1440
页数:6
相关论文
共 11 条
[1]  
BERKOVICH Y, 1998, CHARACTERS FINITE 1
[2]   Finite groups and elements where characters vanish [J].
Chen, Gang .
ARCHIV DER MATHEMATIK, 2010, 94 (05) :419-422
[3]   Super-Brauer characters and super-regular classes [J].
Chen, Xiaoyou ;
Zeng, Jiwen .
MONATSHEFTE FUR MATHEMATIK, 2011, 163 (01) :15-23
[4]   On orbits of automorphism groups [J].
Deaconescu, M ;
Walls, GL .
SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (03) :413-416
[5]   On orbits of automorphism groups II [J].
Deaconescu, Marian ;
Walls, Gary L. .
ARCHIV DER MATHEMATIK, 2009, 92 (03) :200-205
[6]  
Isaacs I. M., 2006, CHARACTER THEORY FIN
[7]   Finite group elements where no irreducible character vanishes [J].
Isaacs, IM ;
Navarro, G ;
Wolf, TR .
JOURNAL OF ALGEBRA, 1999, 222 (02) :413-423
[8]   Zeros of characters of finite groups [J].
Malle, G ;
Navarro, G ;
Olsson, JB .
JOURNAL OF GROUP THEORY, 2000, 3 (04) :353-368
[9]   Zeros of Brauer characters and the defect zero graph [J].
Malle, Gunter .
JOURNAL OF GROUP THEORY, 2010, 13 (02) :171-187
[10]   Zeros of primitive characters in solvable groups [J].
Navarro, G .
JOURNAL OF ALGEBRA, 1999, 221 (02) :644-650