Automatically configuring radial basis function neural networks for nonlinear internal model control

被引:4
作者
Sangeetha, VS [1 ]
Rani, KY [1 ]
Gangiah, K [1 ]
机构
[1] Indian Inst Chem Technol, Div Chem Engn, Proc Dynam & Control Grp, Hyderabad 500007, Andhra Pradesh, India
关键词
radial basis function networks; automatic configuration; nonlinear internal model control; polymerization reactor control;
D O I
10.1080/00986449908912772
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A nonlinear internal model control (NIMC) strategy based on automatically configuring radial basis function networks (RBFN) is proposed for single-input single-output (SISO) systems of relative degree greater than unity. The automatic configuration and training of the RBFN is carried out employing hierarchically-self-organizing-learning algorithm, which eliminates a predefined network structure, with closed-loop input-output data generated for a series of setpoint changes using PI controller. Simulation studies with automatically configuring RBFN for isothermal polymerization reactor control demonstrate the superior performance of the proposed control strategy with automatically configuring RBFN over PI control for setpoint tracking as well as disturbance rejection.
引用
收藏
页码:225 / 250
页数:26
相关论文
共 18 条
[1]  
BAUGHMAN DR, 1995, NEURAL NETWORKS BIOP, P114
[2]   USE OF NEURAL NETS FOR DYNAMIC MODELING AND CONTROL OF CHEMICAL PROCESS SYSTEMS [J].
BHAT, N ;
MCAVOY, TJ .
COMPUTERS & CHEMICAL ENGINEERING, 1990, 14 (4-5) :573-583
[3]   FEEDFORWARD FEEDBACK-CONTROL OF MULTIVARIABLE NONLINEAR PROCESSES [J].
DAOUTIDIS, P ;
SOROUSH, M ;
KRAVARIS, C .
AICHE JOURNAL, 1990, 36 (10) :1471-1484
[4]   AN INTERNAL MODEL CONTROL STRATEGY FOR NONLINEAR-SYSTEMS [J].
HENSON, MA ;
SEBORG, DE .
AICHE JOURNAL, 1991, 37 (07) :1065-1081
[5]   NEURAL NETWORKS FOR NONLINEAR INTERNAL MODEL CONTROL [J].
HUNT, KJ ;
SBARBARO, D .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1991, 138 (05) :431-438
[6]   NEURAL NETWORKS FOR CONTROL-SYSTEMS - A SURVEY [J].
HUNT, KJ ;
SBARBARO, D ;
ZBIKOWSKI, R ;
GAWTHROP, PJ .
AUTOMATICA, 1992, 28 (06) :1083-1112
[7]   A neural linearizing control scheme for nonlinear chemical processes [J].
Kim, SJ ;
Lee, MH ;
Park, SW ;
Lee, SY ;
Park, CH .
COMPUTERS & CHEMICAL ENGINEERING, 1997, 21 (02) :187-200
[8]   A NEW SCHEME COMBINING NEURAL FEEDFORWARD CONTROL WITH MODEL-PREDICTIVE CONTROL [J].
LEE, MY ;
PARK, SW .
AICHE JOURNAL, 1992, 38 (02) :193-200
[9]   A GAUSSIAN POTENTIAL FUNCTION NETWORK WITH HIERARCHICALLY SELF-ORGANIZING LEARNING [J].
LEE, S ;
KIL, RM .
NEURAL NETWORKS, 1991, 4 (02) :207-224
[10]   Polymerization reactor control using autoregressive-plus Volterra-based MPC [J].
Maner, BR ;
Doyle, FJ .
AICHE JOURNAL, 1997, 43 (07) :1763-1784