Numerical study on latent heat thermal energy storage system with PCM partially filled with aluminum foam in local thermal equilibrium

被引:32
作者
Buonomo, Bernardo [1 ]
Manca, Oronzio [1 ]
Nardini, Sergio [1 ]
Plomitallo, Renato Elpidio [1 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dipartimento Ingn, Via Roma 29, I-81031 Aversa, Italy
关键词
Thermal energy storage; Phase change materials; Metal foam; Partially filled composite PCM; PHASE-CHANGE; ENHANCEMENT; CONVECTION; ENCLOSURE;
D O I
10.1016/j.renene.2022.06.122
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The effects of metal foams on Latent Heat Thermal Energy Storage System, LHTESS, based on a phase change material, PCM, is numerically investigated. The geometry of the system is a vertical shell and tube LHTESS made of two concentric tubes. A constant temperature above the melting temperature of the PCM on the internal surface of the hollow cylinder is assumed to simulate the heat transfer from a hot fluid. The external surfaces are adiabatic. The PCM is completely embedded in the volume between the two coaxial cylinders. An aluminum metal foam is chosen, and it partially fills the volume starting from the internal cylinder. The enthalpy-porosity theory and the Darcy-Brinkman-extended model are employed to simulate, respectively, the phase change of the PCM and the metal foam which is modelled in local thermal equilibrium. Ansys-Fluent code is adopted to solve the governing equations. The results are rendered in terms of melting time, liquid fraction, temperature, and stored thermal energy as a function of time and for different metal foam thickness values. The results indicate that the melting time reduces with increase in the thickness of the metal foam. The partially filled thermal storage system exhibits varying characteristics at the initiation and at the sustenance periods of the heating process. A scale analysis is performed to estimate the melting time and the values are in tandem with the numerical model evaluation. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1368 / 1380
页数:13
相关论文
共 50 条
  • [21] A novel bionic packed bed latent heat storage system filled with encapsulated PCM for thermal energy collection
    Zhang, Xiangzhi
    Ren, Yatao
    Ren, Yong
    Yan, Yuying
    Thermal Science and Engineering Progress, 2022, 35
  • [22] Experimental investigation on combined thermal energy storage and thermoelectric system by using foam/PCM composite
    Li, W. Q.
    Zhang, T. Y.
    Li, B. B.
    Cui, F. Q.
    Liu, L. L.
    ENERGY CONVERSION AND MANAGEMENT, 2021, 243
  • [23] Analysis of a latent heat thermal energy storage unit with metal foam insert in both the HTF and PCM sides
    Chen, X.
    Xia, X. L.
    Wang, F. Q.
    Sun, C.
    Liu, R. Q.
    2019 INTERNATIONAL CONFERENCE ON NEW ENERGY AND FUTURE ENERGY SYSTEM, 2019, 354
  • [24] Numerical study of a latent heat thermal energy storage system enhanced by varying fin configurations
    Tiari, Saeed
    Hockins, Addison
    Mahdavi, Mahboobe
    CASE STUDIES IN THERMAL ENGINEERING, 2021, 25
  • [25] Numerical study on thermal performance characteristics of a cascaded latent heat storage unit
    Wang, Yifei
    Wang, Liang
    Chen, Haisheng
    Xie, Ningning
    Yang, Zheng
    Chai, Lei
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2016, 230 (01) : 126 - 137
  • [26] Latent heat thermal energy storage solution for CSPs: Integration of PCM heat exchangers
    Reddy, Lomada Karunakar
    Biswal, Pratibha
    Pujari, Arun Kumar
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [27] NUMERICAL INVESTIGATION ON THE THERMAL PERFORMANCE OF A CASCADED LATENT HEAT THERMAL ENERGY STORAGE
    Li, Pengda
    Xu, Chao
    Liao, Zhirong
    Ju, Xing
    Ye, Feng
    FRONTIERS IN HEAT AND MASS TRANSFER, 2020, 15 (01): : 1 - 10
  • [28] Melting enhancement of PCM in a finned tube latent heat thermal energy storage
    Ahmed, Sameh
    Abderrahmane, Aissa
    Saeed, Abdulkafi Mohammed
    Guedri, Kamel
    Mourad, Abed
    Younes, Obai
    Botmart, Thongchai
    Shah, Nehad Ali
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [29] Thermal Performance of a PCM-Based Thermal Energy Storage with Metal Foam Enhancement
    Chen, Xue
    Li, Xiaolei
    Xia, Xinlin
    Sun, Chuang
    Liu, Rongqiang
    ENERGIES, 2019, 12 (17)
  • [30] Nano-PCM filled energy storage system for solar-thermal applications
    Al-Jethelah, Manar
    Tasnim, Syeda Humaira
    Mahmud, Shohel
    Dutta, Animesh
    RENEWABLE ENERGY, 2018, 126 : 137 - 155