Painleve integrability and N-soliton solution for the Whitham-Broer-Kaupshallow water model using symbolic computation

被引:18
作者
Zhang, Cheng [1 ]
Tian, Bo [1 ,2 ,3 ]
Meng, Xiang-Hua [1 ]
Lue, Xing [1 ]
Cai, Ke-Jie [1 ]
Geng, Tao [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100083, Peoples R China
[3] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Opt Commun & Lightwave Technol, Beijing 100876, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2008年 / 63卷 / 5-6期
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Whitham-Broer-Kaup model; N-soliton solution; auto-Backlund transformation; Painleve analysis; bilinear form;
D O I
10.1515/zna-2008-5-604
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the help of symbolic computation, the Whitham-Broer-Kaup shallow water model is analyzed for its integrability through the Painleve analysis. Then, by truncating the Painleve expansion at the constant level term with two singular manifolds, the Hirota bilinear form is obtained and the corresponding N-soliton solution with graphic analysis is also given. Furthermore, a bilinear auto-Backlund transformation is constructed for the Whitham-Broer-Kaup model, from which a one-soliton solution is presented.
引用
收藏
页码:253 / 260
页数:8
相关论文
共 56 条
[1]  
Ablowitz MJ., 1991, Nonlinear Evolution Equations and Inverse Scattering, DOI 10.1017/CBO9780511623998
[2]   Painleve test for the certain (2+1)-dimensional nonlinear evolution equations [J].
Alagesan, T ;
Chung, Y ;
Nakkeeran, K .
CHAOS SOLITONS & FRACTALS, 2005, 26 (04) :1203-1209
[3]   Symbolic calculation in chemistry: Selected examples [J].
Barnett, MP ;
Capitani, JF ;
von zur Gathen, J ;
Gerhard, J .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 100 (02) :80-104
[4]   Painleve test for some (2+1)-dimensional nonlinear equations [J].
Bekir, A. .
CHAOS SOLITONS & FRACTALS, 2007, 32 (02) :449-455
[5]  
Belokolos E., 1994, ALGEBRA GEOMETRICAL
[6]   APPROXIMATE EQUATIONS FOR LONG WATER WAVES [J].
BROER, LJF .
APPLIED SCIENTIFIC RESEARCH, 1975, 31 (05) :377-395
[7]   Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable [J].
Cao, CW ;
Geng, XG ;
Wang, HY .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (01) :621-643
[8]   PAINLEVE EXPANSIONS FOR NONINTEGRABLE EVOLUTION-EQUATIONS [J].
CARIELLO, F ;
TABOR, M .
PHYSICA D, 1989, 39 (01) :77-94
[9]   Multiple Riccati equations rational expansion method and complexiton solutions of the Whitham-Broer-Kaup equation [J].
Chen, Y ;
Wang, Q .
PHYSICS LETTERS A, 2005, 347 (4-6) :215-227
[10]   A generalized method and general form solutions to the Whitham-Broer-Kaup equation [J].
Chen, Y ;
Wang, Q ;
Li, BA .
CHAOS SOLITONS & FRACTALS, 2004, 22 (03) :675-682