Design and synthesis of ternary cobalt ferrite/graphene/polyaniline hierarchical nanocomposites for high-performance supercapacitors

被引:243
作者
Xiong, Pan [1 ]
Huang, Huajie [1 ]
Wang, Xin [1 ]
机构
[1] Nanjing Univ Sci & Technol, Minist Educ, Key Lab Soft Chem & Funct Mat, Nanjing, Jiangsu, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
Supercapacitor; Cobalt ferrite; Graphene; Polyaniline; Ternary nanocomposites; Electrochemical performance; GRAPHENE/POLYANILINE NANOFIBER COMPOSITES; REDUCED GRAPHENE OXIDE; HIGH-RATE CAPABILITY; ELECTROCHEMICAL PERFORMANCE; POLYANILINE COMPOSITE; OXYGEN REDUCTION; FERRITE; FILM; NANOSTRUCTURES; NANORODS;
D O I
10.1016/j.jpowsour.2013.07.064
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A ternary cobalt ferrite/graphene/polyaniline nanocomposite (CGP) is designed and fabricated via a facile two-step approach: cobalt ferrite nanoparticles dispersed on graphene sheets are achieved by a hydrothermal method, followed by coating with polyaniline (PANI) through in situ polymerization process. Electrochemical measurements demonstrate that the specific capacitance of the resulting ternary hybrid (CGP) is up to 1133.3 F g(-1) at a scan rate of 1 mV s(-1) and 767.7 F g(-1) at a current density of 0.1 A g(-1) using a three-electrode system, while 716.4 F g(-1) at a scan rate of 1 mV s(-1) and 392.3 F g(-1) at a current density of 0.1 A g(-1) using a two-electrode system, which are significantly higher than those of pure CoFe2O4, graphene and PANI, or binary CoFe2O4/graphene, CoFe2O4/PANI and graphene/PANI hybrids. In addition, over 96% of the initial capacitance can be retained after repeating test for 5000 cycles, demonstrating a high cycling stability. The extraordinary electrochemical performance of the ternary CGP nanocomposite can be attributed to its well-designed nanostructure and the synergistic effects of the individual components. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:937 / 946
页数:10
相关论文
共 68 条
[1]   A Comparative Study of Electrochemical Capacitive Behavior of NiFe2O4 Synthesized by Different Routes [J].
Anwar, Shahid ;
Muthu, K. Sudalai ;
Ganesh, V. ;
Lakshminarasimhan, N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (08) :A976-A981
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Structural and electrochemical properties of manganese substituted nickel cobaltite for supercapacitor application [J].
Chang, Sook-Keng ;
Lee, Kuang-Tsin ;
Zainal, Zulkarnain ;
Tan, Kar-Ban ;
Yusof, Nor Azah ;
Yusoff, Wan Mohamad Daud Wan ;
Lee, Jyh-Fu ;
Wu, Nae-Lih .
ELECTROCHIMICA ACTA, 2012, 67 :67-72
[4]   Electrochemical assembly of MnO2 on ionic liquid-graphene films into a hierarchical structure for high rate capability and long cycle stability of pseudocapacitors [J].
Choi, Bong Gill ;
Huh, Yun Suk ;
Hong, Won Hi ;
Kim, Hae Jin ;
Park, Ho Seok .
NANOSCALE, 2012, 4 (17) :5394-5400
[5]   Flexible graphene-polyaniline composite paper for high-performance supercapacitor [J].
Cong, Huai-Ping ;
Ren, Xiao-Chen ;
Wang, Ping ;
Yu, Shu-Hong .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1185-1191
[6]   Fabrication of cobalt ferrite nanostructures and comparison of their electrochemical properties [J].
Deng, D. H. ;
Pang, H. ;
Du, J. M. ;
Deng, J. W. ;
Li, S. J. ;
Chen, J. ;
Zhang, J. S. .
CRYSTAL RESEARCH AND TECHNOLOGY, 2012, 47 (10) :1032-1038
[7]   Hierarchical nanocomposite of polyaniline nanorods grown on the surface of carbon nanotubes for high-performance supercapacitor electrode [J].
Fan, Haosen ;
Wang, Hao ;
Zhao, Ning ;
Zhang, Xiaoli ;
Xu, Jian .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (06) :2774-2780
[8]   One-Step Electrochemical Synthesis of Graphene/Polyaniline Composite Film and Its Applications [J].
Feng, Xiao-Miao ;
Li, Rui-Mei ;
Ma, Yan-Wen ;
Chen, Run-Feng ;
Shi, Nai-En ;
Fan, Qu-Li ;
Huang, Wei .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (15) :2989-2996
[9]   Combination of cobalt ferrite and graphene: High-performance and recyclable visible-light photocatalysis [J].
Fu, Yongsheng ;
Chen, Haiqun ;
Sun, Xiaoqiang ;
Wang, Xin .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 111 :280-287
[10]   High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO2 [J].
Gao, Hongcai ;
Xiao, Fei ;
Ching, Chi Bun ;
Duan, Hongwei .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (05) :2801-2810