STATIONARY MEASURES AND INVARIANT SUBSETS OF HOMOGENEOUS SPACES (II)

被引:41
作者
Benoist, Yves [1 ]
Quint, Jean-Francois [2 ]
机构
[1] Univ Paris 11, CNRS, F-91405 Orsay, France
[2] Univ Paris 13, CNRS, LAGA, F-93430 Villetaneuse, France
关键词
D O I
10.1090/S0894-0347-2013-00760-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a real Lie group, Λ a lattice of G, μ a compactly supported probability measure on G, and Γ the subgroup generated by the support of μ. We prove that, when the Zariski closure of the adjoint group Ad(Γ) is semisimple with no compact factor, every μ-ergodic μ-stationary probability measure on G/Λ is homogeneous. We also prove similar results for p-adic Lie groups. © 2013 American Mathematical Society.
引用
收藏
页码:659 / 734
页数:76
相关论文
共 28 条
[1]  
Benoist Y, 1997, GEOM FUNCT ANAL, V7, P1, DOI 10.1007/PL00001613
[2]   Random walks on finite volume homogeneous spaces [J].
Benoist, Yves ;
Quint, Jean-Francois .
INVENTIONES MATHEMATICAE, 2012, 187 (01) :37-59
[3]   Stationary measures and invariant subsets of homogeneous spaces II [J].
Benoist, Yves ;
Quint, Jean-Francois .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (5-6) :341-345
[4]  
Bougerol P., 1985, Progress in Probability and Statistics, V8
[5]   STATIONARY MEASURES AND EQUIDISTRIBUTION FOR ORBITS OF NONABELIA.N SEMIGROUPS ON THE TORUS [J].
Bourgain, Jean ;
Furman, Alex ;
Lindenstrauss, Elon ;
Mozes, Shahar .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (01) :231-280
[6]  
Chabauty C., 1950, Bull. Soc. Math. France, V78, P143
[7]  
Chacon R., 1960, ILLINOIS J MATH, V4, P153
[8]  
Dixon J. D., 1991, LONDON MATH SOCIETY, V157
[9]  
Eskin A, 2004, RANDOM WALKS AND GEOMETRY, P431
[10]   CONTRACTION PROPERTIES OF A SEMI-GROUP OF INVERTIBLE MATRICES - LIAPUNOV EXPONENTS OF A PRODUCT OF INDEPENDENT RANDOM MATRICES [J].
GUIVARCH, Y ;
RAUGI, A .
ISRAEL JOURNAL OF MATHEMATICS, 1989, 65 (02) :165-196