Painleve analysis and exact solutions of two dimensional Korteweg-de Vries-Burgers equation

被引:3
|
作者
Joy, MP
机构
[1] Materials Research Centre, Indian Institute of Science
来源
PRAMANA-JOURNAL OF PHYSICS | 1996年 / 46卷 / 01期
关键词
Korteweg-de Vries-Burgers equation; Painleve analysis; exact solutions;
D O I
10.1007/BF02848585
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two dimensional Korteweg-de Vries-Burgers equation is shown to be non-integrable using Painleve analysis. Exact travelling wave solutions are obtained using an algorithmic approach of truncating the Painleve series expansions.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [31] Bang-Bang Property for Time Optimal Control of the Korteweg-de Vries-Burgers Equation
    Chen, Mo
    APPLIED MATHEMATICS AND OPTIMIZATION, 2017, 76 (02) : 399 - 414
  • [32] KORTEWEG-DE VRIES-BURGERS (KDVB) EQUATION WITH ATANGANA-BALEANU DERIVATIVE WITH FRACTIONAL ORDER
    Dokuyucu, M. A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (03): : 727 - 733
  • [33] On absolute exponential stability of the Korteweg-de Vries-Burgers equation under nonlinear boundary controls
    Cheng, Yi
    Wu, Yulin
    Wu, Yuhu
    Guo, Bao-Zhu
    AUTOMATICA, 2025, 174
  • [34] Numerical solution of Korteweg-de Vries-Burgers equation by the compact-type CIP method
    YuFeng Shi
    Biao Xu
    Yan Guo
    Advances in Difference Equations, 2015
  • [35] Stratonovich-Khasminskii averaging principle for multiscale random Korteweg-de Vries-Burgers equation
    Gao, Peng
    NONLINEARITY, 2023, 36 (11) : 6124 - 6151
  • [36] Numerical solution of Korteweg-de Vries-Burgers equation by the compact-type CIP method
    Shi, YuFeng
    Xu, Biao
    Guo, Yan
    ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 9
  • [37] Lie Symmetry Reduction on Korteweg-De Vries-Burgers and Short Pulse Equations
    Hong, Joseph Boon Zik
    PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [38] Disturbance rejection approaches of Korteweg-de Vries-Burgers equation under event-triggering mechanism☆
    Kang, Wen
    Zhang, Jing
    Wang, Jun-Min
    AUTOMATICA, 2024, 169
  • [39] On the exact and numerical solutions to a new (2 + 1)-dimensional Korteweg-de Vries equation with conformable derivative
    Özkan Y.S.
    Yaşar E.
    Çelik N.
    Nonlinear Engineering, 2021, 10 (01) : 46 - 65
  • [40] Convergence rate toward shock wave under periodic perturbation for generalized Korteweg-de Vries-Burgers equation
    Chang, Lin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 80