Bit Prudent In-Cache Acceleration of Deep Convolutional Neural Networks

被引:29
|
作者
Wang, Xiaowei [1 ]
Yu, Jiecao [1 ]
Augustine, Charles [2 ]
Iyer, Ravi [2 ]
Das, Reetuparna [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Intel Corp, Santa Clara, CA 95051 USA
基金
美国国家科学基金会;
关键词
In-Memory Computing; Cache; Neural Network Pruning; Low Precision Neural Network;
D O I
10.1109/HPCA.2019.00029
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We propose Bit Prudent In-Cache Acceleration of Deep Convolutional Neural Networks - an in-SRAM architecture for accelerating Convolutional Neural Network (CNN) inference by leveraging network redundancy and massive parallelism. The network redundancy is exploited in two ways. First, we prune and fine-tune the trained network model and develop two distinct methods - coalescing and overlapping to run inferences efficiently with sparse models. Second, we propose an architecture for network models with a reduced bit width by leveraging bit-serial computation. Our proposed architecture achieves a 17.7x/3.7x speedup over server class CPU/GPU, and a 1.6x speedup compared to the relevant in-cache accelerator, with 2% area overhead each processor die, and no loss on top-1 accuracy for AlexNet. With a relaxed accuracy limit, our tunable architecture achieves higher speedups.
引用
收藏
页码:81 / 93
页数:13
相关论文
共 50 条
  • [41] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [42] Deep distributed convolutional neural networks: Universality
    Zhou, Ding-Xuan
    ANALYSIS AND APPLICATIONS, 2018, 16 (06) : 895 - 919
  • [43] Theory of deep convolutional neural networks: Downsampling
    Zhou, Ding-Xuan
    NEURAL NETWORKS, 2020, 124 : 319 - 327
  • [44] Structured Pruning of Deep Convolutional Neural Networks
    Anwar, Sajid
    Hwang, Kyuyeon
    Sung, Wonyong
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2017, 13 (03)
  • [45] Deep convolutional neural networks in the face of caricature
    Matthew Q. Hill
    Connor J. Parde
    Carlos D. Castillo
    Y. Ivette Colón
    Rajeev Ranjan
    Jun-Cheng Chen
    Volker Blanz
    Alice J. O’Toole
    Nature Machine Intelligence, 2019, 1 : 522 - 529
  • [46] Deep Convolutional Neural Networks on Cartoon Functions
    Grohs, Philipp
    Wiatowski, Thomas
    Bolcskei, Helmut
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1163 - 1167
  • [47] Elastography mapped by deep convolutional neural networks
    Liu, DongXu
    Kruggel, Frithjof
    Sun, LiZhi
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (07) : 1567 - 1574
  • [48] Elastography mapped by deep convolutional neural networks
    LIU DongXu
    KRUGGEL Frithjof
    SUN LiZhi
    Science China(Technological Sciences), 2021, 64 (07) : 1567 - 1574
  • [49] Very Deep Convolutional Neural Networks for LVCSR
    Bi, Mengxiao
    Qian, Yanmin
    Yu, Kai
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 3259 - 3263
  • [50] Deep convolutional neural networks in the face of caricature
    Hill, Matthew Q.
    Parde, Connor J.
    Castillo, Carlos D.
    Colon, Y. Ivette
    Ranjan, Rajeev
    Chen, Jun-Cheng
    Blanz, Volker
    O'Toole, Alice J.
    NATURE MACHINE INTELLIGENCE, 2019, 1 (11) : 522 - 529