Mitochondrial β-oxidation of saturated fatty acids in humans

被引:249
作者
Adeva-Andany, Maria M. [1 ]
Carneiro-Freire, Natalia [1 ]
Seco-Filgueira, Monica [1 ]
Fernandez-Fernandez, Carlos [1 ]
Mourino-Bayolo, David [1 ]
机构
[1] Hosp Gen Juan Cardona, Dept Internal Med, C Pardo Bazan S-N, Ferrol 15406, Spain
关键词
ACYL-COA DEHYDROGENASE; CHAIN 3-HYDROXYACYL-COA DEHYDROGENASE; COENZYME-A DEHYDROGENASE; ACYLCARNITINE TRANSLOCASE DEFICIENCY; TRIFUNCTIONAL PROTEIN-DEFICIENCY; CARNITINE PALMITOYLTRANSFERASE 2; LIPID-STORAGE MYOPATHY; HUMAN SKELETAL-MUSCLE; ACIDURIA TYPE-II; ELECTRON-TRANSFER;
D O I
10.1016/j.mito.2018.02.009
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mitochondrial beta-oxidation of fatty acids generates acetyl-coA, NADH and FADH(2). Acyl-coA synthetases catalyze the binding of fatty acids to coenzyme A to form fatty acyl-coA thioesters, the first step in the intracellular metabolism of fatty acids. L-carnitine system facilitates the transport of fatty acyl-coA esters across the mitochondrial membrane. Carnitine palmitoyltransferase-1 transfers acyl groups from coenzyme A to L-carnitine, forming acyl-carnitine esters at the outer mitochondrial membrane. Carnitine acyl-carnitine translocase exchanges acyl-carnitine esters that enter the mitochondria, by free L-carnitine. Carnitine palmitoyltransferase-2 converts acyl-carnitine esters back to acyl-coA esters at the inner mitochondrial membrane. The beta-oxidation pathway of fatty acyl-coA esters includes four reactions. Fatty acyl-coA dehydrogenases catalyze the introduction of a double bond at the C2 position, producing 2-enoyl-coA esters and reducing equivalents that are transferred to the respiratory chain via electron transferring flavoprotein. Enoyl-coA hydratase catalyzes the hydration of the double bond to generate a 3-L-hydroxyacyl-coA derivative. 3-L-hydroxyacyl-coA dehydrogenase catalyzes the formation of a 3-ketoacyl-coA intermediate. Finally, 3-ketoacyl-coA thiolase catalyzes the cleavage of the chain, generating acetyl-coA and a fatty acyl-coA ester two carbons shorter. Mitochondrial trifunctional protein catalyzes the three last steps in the beta-oxidation of long-chain and medium-chain fatty acyl-coA esters while individual enzymes catalyze the beta-oxidation of short-chain fatty acyl-coA esters. Clinical phenotype of fatty acid oxidation disorders usually includes hypoketotic hypoglycemia triggered by fasting or infections, skeletal muscle weakness, cardiomyopathy, hepatopathy, and neurological manifestations. Accumulation of non-oxidized fatty acids promotes their conjugation with glycine and L-carnitine and alternate ways of oxidation, such as omega-oxidation.
引用
收藏
页码:73 / 90
页数:18
相关论文
共 108 条
[1]   CLONING AND SEQUENCE-ANALYSIS OF A FULL-LENGTH CDNA-ENCODING HUMAN MITOCHONDRIAL 3-OXOACYL-COA THIOLASE [J].
ABE, H ;
OHTAKE, A ;
YAMAMOTO, S ;
SATOH, Y ;
TAKAYANAGI, M ;
AMAYA, Y ;
TAKIGUCHI, M ;
SAKURABA, H ;
SUZUKI, Y ;
MORI, M ;
NIIMI, H .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1216 (02) :304-306
[2]  
Aksglaede L, 2015, JIMD REP, V23, P67, DOI 10.1007/8904_2015_428
[3]   SHORT-CHAIN ACYL-COENZYME-A DEHYDROGENASE-DEFICIENCY - CLINICAL AND BIOCHEMICAL-STUDIES IN 2 PATIENTS [J].
AMENDT, BA ;
GREENE, C ;
SWEETMAN, L ;
CLOHERTY, J ;
SHIH, V ;
MOON, A ;
TEEL, L ;
RHEAD, WJ .
JOURNAL OF CLINICAL INVESTIGATION, 1987, 79 (05) :1303-1309
[4]  
ANDRESEN BS, 1993, AM J HUM GENET, V53, P730
[5]  
Angelini C, 2018, JIMD REP, V38, P33, DOI 10.1007/8904_2017_27
[6]   PURIFICATION OF HUMAN VERY-LONG-CHAIN ACYL-COENZYME-A DEHYDROGENASE AND CHARACTERIZATION OF ITS DEFICIENCY IN 7 PATIENTS [J].
AOYAMA, T ;
SOURI, M ;
USHIKUBO, S ;
KAMIJO, T ;
YAMAGUCHI, S ;
KELLEY, RI ;
RHEAD, WJ ;
UETAKE, K ;
TANAKA, K ;
HASHIMOTO, T .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 95 (06) :2465-2473
[7]   A Delphi clinical practice protocol for the management of very long chain acyl-CoA dehydrogenase deficiency [J].
Arnold, Georgianne L. ;
Van Hove, Johan ;
Freedenberg, Debra ;
Strauss, Arnold ;
Longo, Nicola ;
Burton, Barbara ;
Garganta, Cheryl ;
Ficicioglu, Can ;
Cederbaum, Stephen ;
Harding, Cary ;
Boles, Richard G. ;
Matern, Dietrich ;
Chakraborty, Pranesh ;
Feigenbaum, Annette .
MOLECULAR GENETICS AND METABOLISM, 2009, 96 (03) :85-90
[8]   Mutations in the sarcosine dehydrogenase gene in patients with sarcosinemia [J].
Bar-joseph, Ifat ;
Pras, Elon ;
Reznik-Wolf, Haike ;
Marek-Yagel, Dina ;
Abu-Horvitz, Almogit ;
Dushnitzky, Maya ;
Goldstein, Nurit ;
Rienstein, Shlomit ;
Dekel, Michal ;
Pode-Shakked, Ben ;
Zlotnik, Joseph ;
Benarrosh, Anelia ;
Gillery, Philippe ;
Hofliger, Niklaus ;
Auray-Blais, Christiane ;
Garnotel, Roselyne ;
Anikster, Yair .
HUMAN GENETICS, 2012, 131 (11) :1805-1810
[9]   Biochemical characterization and crystal structure determination of human heart short chain L-3-Hydroxyacyl-CoA dehydrogenase provide insights into catalytic mechanism [J].
Barycki, JJ ;
O'Brien, LK ;
Bratt, JM ;
Zhang, RG ;
Sanishvili, R ;
Strauss, AW ;
Banaszak, LJ .
BIOCHEMISTRY, 1999, 38 (18) :5786-5798
[10]   Multiple acyl-CoA dehydrogenase deficiency (MADD) as a cause of late-onset treatable metabolic disease [J].
Behin, A. ;
Acquaviva-Bourdain, C. ;
Souvannanorath, S. ;
Streichenberger, N. ;
Attarian, S. ;
Bassez, G. ;
Brivet, M. ;
Fouilhoux, A. ;
Labarre-Villa, A. ;
Laquerriere, A. ;
Perard, L. ;
Kaminsky, P. ;
Pouget, J. ;
Rigal, O. ;
Vanhulle, C. ;
Eymard, B. ;
Vianey-Saban, C. ;
Laforet, P. .
REVUE NEUROLOGIQUE, 2016, 172 (03) :231-241