TRAVELING WAVE SOLUTIONS OF THE GREEN-NAGHDI SYSTEM

被引:4
作者
Deng, Shengfu [1 ]
Guo, Boling [2 ]
Wang, Tingchun [3 ]
机构
[1] Zhanjiang Normal Univ, Dept Math, Zhanjiang 524048, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2013年 / 23卷 / 05期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Green-Naghdi system; smooth solitary wave solutions; solitary cusp wave solutions; smooth periodic wave solutions; periodic cusp wave solutions; WATER; BIFURCATIONS; DERIVATION; EQUATIONS;
D O I
10.1142/S0218127413500879
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the traveling wave solutions of the Green-Naghdi system. Using the qualitative analysis methods of planar autonomous systems, we show not only its phase portraits but also the exact expressions of some bounded wave solutions. These results are a complement of the work by Deng et al. [2011], which studied the traveling wave solutions of its equivalent system under some conditions.
引用
收藏
页数:8
相关论文
共 17 条
[1]  
Alvarez-Samanieg B, 2008, INDIANA U MATH J, V57, P97
[2]   Large time existence for 3D water-waves and asymptotics [J].
Alvarez-Samaniego, Borys ;
Lannes, David .
INVENTIONES MATHEMATICAE, 2008, 171 (03) :485-541
[3]   Fully nonlinear internal waves in a two-fluid system [J].
Choi, W ;
Camassa, R .
JOURNAL OF FLUID MECHANICS, 1999, 396 :1-36
[4]   On an integrable two-component Camassa-Holm shallow water system [J].
Constantin, Adrian ;
Ivanov, Rossen I. .
PHYSICS LETTERS A, 2008, 372 (48) :7129-7132
[5]   SOME TRAVELING WAVE SOLITONS OF THE GREEN-NAGHDI SYSTEM [J].
Deng, Shengfu ;
Guo, Boling ;
Wang, Tingchun .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (02) :575-585
[6]   DERIVATION OF EQUATIONS FOR WAVE-PROPAGATION IN WATER OF VARIABLE DEPTH [J].
GREEN, AE ;
NAGHDI, PM .
JOURNAL OF FLUID MECHANICS, 1976, 78 (NOV23) :237-246
[7]   THEORY OF WATER WAVES [J].
GREEN, AE ;
LAWS, N ;
NAGHDI, PM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1974, 338 (1612) :43-55
[8]   Derivation and analysis of a new 2D Green-Naghdi system [J].
Israwi, Samer .
NONLINEARITY, 2010, 23 (11) :2889-2904
[9]   Large time existence for 1D Green-Naghdi equations [J].
Israwi, Samer .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (01) :81-93
[10]   Bifurcations of traveling wave solutions for four classes of nonlinear wave equations [J].
Li, JB ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (12) :3973-3998