Development of weak-textured and high-performance Mg-Zn-Ca alloy sheets based on Zn content optimization

被引:58
作者
Zhao, Long-Qing [2 ,3 ]
Wang, Cheng [1 ,2 ,3 ]
Chen, Jun-Chen [2 ,3 ]
Ning, Hong [2 ,3 ]
Yang, Zhi-Zheng [2 ,3 ]
Xu, Jin [2 ,3 ]
Wang, Hui-Yuan [1 ,2 ,3 ,4 ]
机构
[1] Jilin Univ, State Key Lab Automot Simulat & Control, 5988 Renmin St, Changchun 130025, Peoples R China
[2] Jilin Univ, Key Lab Automobile Mat, Minist Educ, Nanling Campus,5988 Renmin St, Changchun 130025, Peoples R China
[3] Jilin Univ, Sch Mat Sci & Engn, Nanling Campus,5988 Renmin St, Changchun 130025, Peoples R China
[4] Jilin Univ, Int Ctr Future Sci, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnesium alloys; Rolling; Texture; Recrystallization; Mechanical properties; RECRYSTALLIZATION NUCLEATION SITES; STATIC RECRYSTALLIZATION; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; MICROSTRUCTURE EVOLUTION; DEFORMATION MECHANISM; STRETCH FORMABILITY; HARDENING BEHAVIOR; ROOM-TEMPERATURE; PHASE PARTICLES;
D O I
10.1016/j.jallcom.2020.156640
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An intense texture is usually developed in conventional Mg alloys after deformation, resulting in unsatisfactory formability at room temperature. In the present work, a low-alloyed and weak-textured Mg-1.5Zn-0.2Ca (wt.%) alloy that exhibited an advantageous combination of strength and ductility was developed, with an ultimate strength of similar to 270 MPa and fracture elongation of similar to 30%. The role of Zn addition in the texture and microstructure evolution was systematically investigated. The Mg-xZn-0.2Ca (x = 0.5, 1.0, 1.5, and 2.0 wt%) alloys with increasing Zn content stored additional deformation energy, which accelerated the static recrystallization (SRX) process and resulted in a gradual weakening of the annealing texture. The co-addition of Zn and Ca contributed to the random SRX nucleation and the enhanced solute dragging effects by decreasing grain boundary energy, leading to a weaker texture in the Mg-1.5Zn-0.2Ca alloy than that in the Mg-1.5Zn and Mg-0.2Ca alloys after annealing. The excellent ductility of Mg-1.5Zn-0.2Ca alloy was attributed to the simultaneous increment of uniform elongation and post-uniform elongation as Zn content increases, benefited from its weakened texture and improved failure mode, respectively. This work provides valuable insights into the development of novel low-alloyed Mg sheets with a weak texture, which possess great potential for direct forming to near-net-shaped products without tearing and fracturing. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Formation of anomalous twinning and its effect on texture development in a cold-rolled Mg-Zn-Ca alloy sheet [J].
Nakata, T. ;
Xu, C. ;
Kamado, S. .
MATERIALS CHARACTERIZATION, 2021, 181
[22]   Antimicrobial Bioresorbable Mg-Zn-Ca Alloy for Bone Repair in a Comparison Study with Mg-Zn-Sr Alloy and Pure Mg [J].
Zhang, Chaoxing ;
Lin, Jiajia ;
Nhu Y Nguyen ;
Guo, Yuxing ;
Xu, Changlu ;
Seo, Catherine ;
Villafana, Edgar ;
Jimenez, Hector ;
Chai, Yang ;
Guan, Renguo ;
Liu, Huinan .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2020, 6 (01) :517-538
[23]   Microstructure refinement by a novel friction-based processing on Mg-Zn-Ca alloy [J].
Chen, Ting ;
Fu, Banglong ;
Shen, Junjun ;
Suhuddin, Uceu F. H. R. ;
Wiese, Bjoern ;
Dos Santos, Jorge F. ;
Bergmann, Jean Pierre ;
Klusemann, Benjamin .
MATERIAL FORMING, ESAFORM 2024, 2024, 41 :2031-2040
[24]   Enhancing mechanical properties of an Mg-Zn-Ca alloy via extrusion [J].
Du, Yuzhou ;
Du, Wei ;
Zhang, Danli ;
Ge, Yanfeng ;
Jiang, Bailing .
MATERIALS SCIENCE AND TECHNOLOGY, 2021, 37 (06) :624-631
[25]   Manufacturing and processing of sheets using a Mg-Al-Ca-Zn-Y alloy for automotive applications [J].
Gneiger, Stefan ;
Papenberg, Nikolaus ;
Mitsche, Stefan ;
Fehlbier, Martin .
RESULTS IN ENGINEERING, 2024, 21
[26]   Processing and microstructure-property relations of high-strength low-alloy (HSLA) Mg-Zn-Ca alloys [J].
Hofstetter, J. ;
Rueedi, S. ;
Baumgartner, I. ;
Kilian, H. ;
Mingler, B. ;
Povoden-Karadeniz, E. ;
Pogatscher, S. ;
Uggowitzer, P. J. ;
Loeffler, J. F. .
ACTA MATERIALIA, 2015, 98 :423-432
[27]   Preparation and characterization of a new biomedical Mg-Zn-Ca alloy [J].
Sun, Yu ;
Zhang, Baoping ;
Wang, Yin ;
Geng, Lin ;
Jiao, Xiaohui .
MATERIALS & DESIGN, 2012, 34 :58-64
[28]   Threshold creep behaviour of an aged Mg-Zn-Ca alloy [J].
Naghdi, F. ;
Mahmudi, R. ;
Kang, J. Y. ;
Kim, H. S. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 696 :536-543
[29]   Influence of ECAP routes on microstructure and mechanical properties of Mg-Zn-Ca alloy [J].
Tong, L. B. ;
Zheng, M. Y. ;
Hu, X. S. ;
Wu, K. ;
Xu, S. W. ;
Kamado, S. ;
Kojima, Y. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (16-17) :4250-4256
[30]   Microstructure and properties of biomedical Mg-Zn-Ca alloy at different extrusion temperatures [J].
Song, Yuwei ;
Yuan, Kezhen ;
Li, Xian ;
Qiao, Yang .
MATERIALS TODAY COMMUNICATIONS, 2023, 35