Inverse problems for a perturbed time fractional diffusion equation with final overdetermination

被引:14
作者
Kinash, Nataliia [1 ]
Janno, Jaan [1 ]
机构
[1] Tallinn Univ Technol, Dept Cybernet, Ehitajate Tee 5, EE-19086 Tallinn, Estonia
关键词
fractional diffusion; fractional parabolic equation; inverse problem; UNIQUENESS;
D O I
10.1002/mma.4719
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inverse problems to recover a space-dependent factor of a source term and an initial condition in a perturbed time fractional diffusion equation containing an additional convolution term from final data are considered. Existence, uniqueness, and stability of solutions to these problems are proved.
引用
收藏
页码:1925 / 1943
页数:19
相关论文
共 38 条
[21]   Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations [J].
Jiang, Daijun ;
Li, Zhiyuan ;
Liu, Yikan ;
Yamamoto, Masahiro .
INVERSE PROBLEMS, 2017, 33 (05)
[22]   An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions [J].
Kirane, Mokhtar ;
Malik, Salman A. ;
Al-Gwaiz, Mohammed A. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (09) :1056-1069
[23]   Uniqueness for inverse problems of determining orders of multi-term time-fractional derivatives of diffusion equation [J].
Li, Zhiyuan ;
Yamamoto, Masahiro .
APPLICABLE ANALYSIS, 2015, 94 (03) :570-579
[24]  
Lopushanska H, 2016, ELECTRON J DIFFER EQ
[25]   Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation [J].
Luchko, Yury .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (02) :538-548
[26]   On inverse problems for pseudoparabolic and parabolic equations of filtration [J].
Lyubanova, A. Sh. ;
Tani, A. .
INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2011, 19 (07) :1023-1042
[27]   Fractional calculus models of complex dynamics in biological tissues [J].
Magin, Richard L. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1586-1593
[28]   Time-fractional diffusion of distributed order [J].
Mainardi, Francesco ;
Mura, Antonio ;
Pagnini, Gianni ;
Gorenflo, Rudolf .
JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (9-10) :1267-1290
[29]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[30]   Coefficient inverse problem for a fractional diffusion equation [J].
Miller, Luc ;
Yamamoto, Masahiro .
INVERSE PROBLEMS, 2013, 29 (07)