Inverse problems for a perturbed time fractional diffusion equation with final overdetermination

被引:14
作者
Kinash, Nataliia [1 ]
Janno, Jaan [1 ]
机构
[1] Tallinn Univ Technol, Dept Cybernet, Ehitajate Tee 5, EE-19086 Tallinn, Estonia
关键词
fractional diffusion; fractional parabolic equation; inverse problem; UNIQUENESS;
D O I
10.1002/mma.4719
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inverse problems to recover a space-dependent factor of a source term and an initial condition in a perturbed time fractional diffusion equation containing an additional convolution term from final data are considered. Existence, uniqueness, and stability of solutions to these problems are proved.
引用
收藏
页码:1925 / 1943
页数:19
相关论文
共 38 条
[1]  
[Anonymous], THEORY APPL
[2]  
[Anonymous], 1953, Methods of mathematical physics
[3]  
[Anonymous], J PHYS A
[4]  
[Anonymous], 2011, P INT C IS INIR PET
[5]  
[Anonymous], 2009, ARXIV09090230MATHCA
[6]  
[Anonymous], 2003, THESIS
[7]  
[Anonymous], ELECT J DIFF EQNS
[8]  
Baeumer B., 2005, Fract. Calc. Appl. Anal, V8, P371
[9]   Linear differential equations of fractional order [J].
Bonilla, Blanca ;
River, Margarita ;
Trujillo, Juan J. .
ADVANCES IN FRACTIONAL CALCULUS: THEORETICAL DEVELOPMENTS AND APPLICATIONS IN PHYSICS AND ENGINEERING, 2007, :77-+
[10]   Generalized fractional diffusion equations for accelerating subdiffusion and truncated Levy flights [J].
Chechkin, A. V. ;
Gonchar, V. Yu. ;
Gorenflo, R. ;
Korabel, N. ;
Sokolov, I. M. .
PHYSICAL REVIEW E, 2008, 78 (02)