Thermal induced structural properties of silver(I) sulphate (Ag2SO4)

被引:6
|
作者
Larsen, Helge B. [1 ]
Thorkildsen, Gunnar [1 ]
Nicholson, David G. [2 ]
Pattison, Philip [3 ,4 ]
机构
[1] Univ Stavanger, Dept Math & Nat Sci, N-4036 Stavanger, Norway
[2] Norwegian Univ Sci & Technol, Dept Chem, N-7491 Trondheim, Norway
[3] Ecole Polytech Fed Lausanne, Lab Cristallog, BSP, F-1015 Lausanne, Switzerland
[4] Swiss Norwegian Beamlines, ESRF, BP220, Grenoble 9, France
关键词
Colossal thermal expansion; phase transitions; structure elucidation; X-ray diffraction; PHASE-TRANSITIONS; IONIC-CONDUCTION; LINASO4; LI2SO4; OXIDES;
D O I
10.1002/crat.201600173
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The crystal structures of silver(I) sulphate, Ag2SO4, have been investigated as a function of temperature. A main feature is the phase transition from the low-temperature ordered phase, F ddd, to the high-temperature disordered phase, P63/mmc. In particular, the high-temperature structure is solved from single crystal synchrotron X-ray measurements. In this phase the title compound undergoes a colossal (anisotropic) thermal expansion of 136(4)x10-6K-1. This is presumably owing to a high anisotropic vibration state of one of the two crystallographically independent Ag-atoms. Simultaneously occurring high ionic conductivity may be associated with silver ions moving along the c-axis using a paddle-wheel assisted percolative mechanism. Onset of metallic silver in the single crystals is documented, seemingly dependent on thermal pre-history, mosaic structure and chemical synthesis. Possible mechanisms explaining this effect, comprising disproportionation or photo-decomposition, are suggested.
引用
收藏
页码:730 / 737
页数:8
相关论文
共 50 条
  • [31] AgNbO3 dispersed Ag2SO4 composite for potentiometric SO2 gas sensor application
    Randhawa, JB
    Ambekar, P
    Bhoga, SS
    Singh, K
    IONICS, 2004, 10 (1-2) : 39 - 44
  • [32] AgNbO3 dispersed Ag2SO4 composite for potentiometric SO2 gas sensor application
    J. B. Randhawa
    P. Ambekar
    S. S. Bhoga
    K. Singh
    Ionics, 2004, 10 : 39 - 44
  • [33] ELECTROMOTIVE FORCE OF THE THERMOGALVANIC CELL Ag(T1) vertical Ag2SO4 vertical Ag(T2).
    Glagoleva, N.A.
    Markov, B.F.
    1600, (19):
  • [34] Electrochemical Impedance Spectroscopy of Direct Methanol Fuel Cell Having Ag/Ag2SO4 Reference Electrode
    Inoue, Mitsuhiro
    Iwasaki, Tatsuya
    Umeda, Minoru
    ELECTROCHEMISTRY, 2011, 79 (05) : 329 - 333
  • [35] COD测定废液中Ag2SO4的回收循环利用研究
    李文喜
    张炜
    李静
    宝鸡文理学院学报(自然科学版), 2014, 34 (01) : 40 - 44
  • [36] STANDARD ELECTRODE POTENTIAL OF FORMATION CELL AG/AG2SO4(C)/SO3(G), O2(G), PT
    ADYA, AK
    GAUR, HC
    INDIAN JOURNAL OF CHEMISTRY, 1974, 12 (09): : 1001 - 1001
  • [37] Fabrication of nanostructured AgCl-coated Ag2SO4 photocatalysts for efficient antibiotic degradation
    Mao, Hairong
    Liu, Danqing
    Liu, Nian
    Wang, Bin
    Tian, Yajie
    Yu, Xin
    MATERIALS LETTERS, 2024, 375
  • [38] Ionic conductivity of Ag2SO4 doped with transition metal and rare earth ion impurities
    Singh, K
    Pande, SM
    Anwane, SW
    Biioga, SS
    BULLETIN OF ELECTROCHEMISTRY, 1996, 12 (11-12): : 652 - 655
  • [39] Iodination of (E)-2,2,5,5-tetramethyl-3,4-diphenylhex-3-ene: Catalytic effects of silver triflate and water in the I-2/Ag2SO4 iodination
    Sekher, P
    Gano, JE
    Luzik, ED
    SYNTHETIC COMMUNICATIONS, 1997, 27 (20) : 3631 - 3636
  • [40] Ionic conductivity of Ag2SO4 doped with transition metal and rare earth ion impurities
    Singh, K.
    Pande, S. M.
    Anwane, S. W.
    Bhoga, S. S.
    Bulletin of Electrochemistry, 12 (11-12):