The Characterizations and Constructions of Sprays of Isotropic Curvature

被引:0
作者
Cheng, Xin Yue [1 ]
Cao, Ke Xiang [1 ]
Qing, Chun Yan [1 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Spray; spray of isotropic curvature; chi-curvature; S-curvature; Funk metric; RICCI CURVATURE;
D O I
10.1007/s10114-022-1120-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the sprays of isotropic curvature. We first determine the relationship between chi-curvatures of two projectively related sprays. Based on this, we find an approach to construct sprays of isotropic curvature and find infinitely many sprays of isotropic curvature via some known sprays of isotropic curvature. In particular, by using famous Funk metric Theta, we can construct infinitely many sprays of isotropic curvature, some of which can be induced by Finsler metrics, but others cannot be induced by any Finsler metric.
引用
收藏
页码:1612 / 1620
页数:9
相关论文
共 12 条
[1]   A comparison theorem on the Ricci curvature in projective geometry [J].
Chen, XY ;
Shen, ZM .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 23 (02) :141-155
[2]  
Cheng X., 2012, An approach via Randers spaces, DOI [10.1007/978-3-642-24888-7, DOI 10.1007/978-3-642-24888-7]
[3]  
Chern S.-S., 2005, Riemann-Finsler Geometry, V6
[4]  
Douglas J, 1928, ANN MATH, V29, P143
[5]   Sprays of isotropic curvature [J].
Li, Benling ;
Shen, Zhongmin .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2018, 29 (01)
[6]   Ricci Curvature Tensor and Non-Riemannian Quantities [J].
Li, Benling ;
Shen, Zhongmin .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (03) :530-537
[7]  
Muzsnay Z, 2006, HOUSTON J MATH, V32, P79
[8]  
Okada T., 1983, TENSOR, V40, P117
[9]  
Shen Z., 2001, Differential Geometry of Spray and Finsler Spaces, DOI DOI 10.1007/978-94-015-9727-2
[10]   On sprays with vanishing χ-curvature [J].
Shen, Zhongmin .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (10)