Composite flexible skin with large negative Poisson's ratio range: numerical and experimental analysis

被引:38
作者
Chen, Y. J. [1 ,2 ]
Scarpa, F. [2 ]
Farrow, I. R. [2 ]
Liu, Y. J. [3 ]
Leng, J. S. [1 ]
机构
[1] HIT, Ctr Composite Mat & Struct, Harbin 150080, Peoples R China
[2] Univ Bristol, Adv Composites Ctr Innovat & Sci, Bristol BS8 1TR, Avon, England
[3] HIT, Dept Aerosp Sci & Mech, Harbin 150080, Peoples R China
关键词
ELASTIC-CONSTANTS; AEROELASTIC CHARACTERISTICS; AUXETIC MATERIALS; DESIGN; DEFORMATION; WINGS;
D O I
10.1088/0964-1726/22/4/045005
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper describes the manufacturing, characterization and parametric modeling of a novel fiber-reinforced composite flexible skin with in-plane negative Poisson's ratio (auxetic) behavior. The elastic mechanical performance of the auxetic skin is evaluated using a three-dimensional analytical model based on the classical laminate theory (CLT) and Sun's thick laminate theory. Good agreement is observed between in-plane Poisson's ratios and Young's moduli of the composite skin obtained by the theoretical model and the experimental results. A parametric analysis carried out with the validated model shows that significant changes in the in-plane negative Poisson's ratio can be achieved through different combinations of matrix and fiber materials and stacking sequences. It is also possible to identify fiber-reinforced composite skin configurations with the same in-plane auxeticity but different orthotropic stiffness performance, or the same orthotropic stiffness performance but different in-plane auxeticity. The analysis presented in this work provides useful guidelines to develop and manufacture flexible skins with negative Poisson's ratio for applications focused on morphing aircraft wing designs.
引用
收藏
页数:12
相关论文
共 48 条
[1]   The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs [J].
Alderson, A. ;
Alderson, K. L. ;
Chirima, G. ;
Ravirala, N. ;
Zied, K. M. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (07) :1034-1041
[2]   Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading [J].
Alderson, A. ;
Alderson, K. L. ;
Attard, D. ;
Evans, K. E. ;
Gatt, R. ;
Grima, J. N. ;
Miller, W. ;
Ravirala, N. ;
Smith, C. W. ;
Zied, K. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (07) :1042-1048
[3]  
[Anonymous], THESIS GEORGIA I TEC
[4]  
[Anonymous], 2004, 45 AIAA ASME ASCE AH
[5]  
[Anonymous], P 19 INT C AD STRUCT
[6]  
[Anonymous], P ASME 2011 INT MECH
[7]   Aerodynamic and static aeroelastic characteristics of a variable-span morphing wing [J].
Bae, JS ;
Seigler, TM ;
Inman, DJ .
JOURNAL OF AIRCRAFT, 2005, 42 (02) :528-534
[8]   Analysis of multi-layered filament-wound composite pipes under combined internal pressure and thermomechanical loading with thermal variations [J].
Bakaiyan, H. ;
Hosseini, H. ;
Ameri, E. .
COMPOSITE STRUCTURES, 2009, 88 (04) :532-541
[9]   Development of high-rate, adaptive trailing edge control surface for the Smart Wing Phase 2 wind tunnel model [J].
Bartley-Cho, JD ;
Wang, DP ;
Martin, CA ;
Kudva, JN ;
West, MN .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2004, 15 (04) :279-291
[10]   Composite chiral structures for morphing airfoils: Numerical analyses and development of a manufacturing process [J].
Bettini, Paolo ;
Airoldi, Alessandro ;
Sala, Giuseppe ;
Di Landro, Luca ;
Ruzzene, Massimo ;
Spadoni, Alessandro .
COMPOSITES PART B-ENGINEERING, 2010, 41 (02) :133-147