Mechanisms of Cell Cycle Control Revealed by a Systematic and Quantitative Overexpression Screen in S. cerevisiae

被引:53
|
作者
Niu, Wei [1 ,2 ]
Li, Zhihua [1 ,2 ]
Zhan, Wenjing [1 ,3 ]
Iyer, Vishwanath R. [1 ,2 ,3 ]
Marcotte, Edward M. [1 ,2 ,4 ]
机构
[1] Univ Texas Austin, Ctr Syst & Synthet Biol, Austin, TX 78712 USA
[2] Univ Texas Austin, Inst Cellular & Mol Biol, Austin, TX 78712 USA
[3] Univ Texas Austin, Sect Mol Genet & Microbiol, Austin, TX 78712 USA
[4] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA
来源
PLOS GENETICS | 2008年 / 4卷 / 07期
关键词
D O I
10.1371/journal.pgen.1000120
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Regulation of cell cycle progression is fundamental to cell health and reproduction, and failures in this process are associated with many human diseases. Much of our knowledge of cell cycle regulators derives from loss-of-function studies. To reveal new cell cycle regulatory genes that are difficult to identify in loss-of-function studies, we performed a near-genome-wide flow cytometry assay of yeast gene overexpression-induced cell cycle delay phenotypes. We identified 108 genes whose overexpression significantly delayed the progression of the yeast cell cycle at a specific stage. Many of the genes are newly implicated in cell cycle progression, for example SKO1, RFA1, and YPR015C. The overexpression of RFA1 or YPR015C delayed the cell cycle at G2/M phases by disrupting spindle attachment to chromosomes and activating the DNA damage checkpoint, respectively. In contrast, overexpression of the transcription factor SKO1 arrests cells at G1 phase by activating the pheromone response pathway, revealing new cross-talk between osmotic sensing and mating. More generally, 92%-94% of the genes exhibit distinct phenotypes when overexpressed as compared to their corresponding deletion mutants, supporting the notion that many genes may gain functions upon overexpression. This work thus implicates new genes in cell cycle progression, complements previous screens, and lays the foundation for future experiments to define more precisely roles for these genes in cell cycle progression.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Cyclin-Dependent Kinase Co-Ordinates Carbohydrate Metabolism and Cell Cycle in S. cerevisiae
    Zhao, Gang
    Chen, Yuping
    Carey, Lucas
    Futcher, Bruce
    MOLECULAR CELL, 2016, 62 (04) : 546 - 557
  • [22] Microcompartmentation of cell wall integrity sensors in S. cerevisiae
    Kock, Christian
    Wittland, Janina
    Arlt, Henning
    Kurre, Rainer
    Ungermann, Christian
    Heinisch, Juergen
    YEAST, 2013, 30 : 143 - 143
  • [23] A Comprehensive Protein Interaction Network of Calcium Triggered Mechanisms in S. cerevisiae
    Delikanli, Senem Tiveci
    Haliloglu, Turkan
    Ulgen, Kutlu Ozergin
    NEW BIOTECHNOLOGY, 2012, 29 : S149 - S149
  • [24] A Minispidroin Guides the Molecular Design for Cellular Condensation Mechanisms in S. cerevisiae
    Feng, Jianhui
    Gabryelczyk, Bartosz
    Tunn, Isabell
    Osmekhina, Ekaterina
    Linder, Markus B.
    ACS SYNTHETIC BIOLOGY, 2023, 12 (10): : 3050 - 3063
  • [25] The steady-state level and stability of TLS polymerase eta are cell cycle dependent in the yeast S. cerevisiae
    Plachta, Michal
    Halas, Agnieszka
    McIntyre, Justyna
    Sledziewska-Gojska, Ewa
    DNA REPAIR, 2015, 29 : 147 - 153
  • [26] A systematic screen reveals new elements acting at the G2/M cell cycle control
    Francisco J Navarro
    Paul Nurse
    Genome Biology, 13
  • [27] A systematic screen reveals new elements acting at the G2/M cell cycle control
    Navarro, Francisco J.
    Nurse, Paul
    GENOME BIOLOGY, 2012, 13 (05):
  • [28] External Control of the GAL Network in S. cerevisiae: A View from Control Theory
    Yang, Ruoting
    Lenaghan, Scott C.
    Wikswo, John P.
    Zhang, Mingjun
    PLOS ONE, 2011, 6 (04):
  • [29] Live cell monitoring of double strand breaks in S. cerevisiae
    Waterman, David P.
    Zhou, Felix
    Li, Kevin
    Lee, Cheng-Sheng
    Tsabar, Michael
    Eapen, Vinay V.
    Mazzella, Allison
    Haber, James E.
    PLOS GENETICS, 2019, 15 (03):
  • [30] The incorporation of mannoproteins in the cell wall of S. cerevisiae and filamentous Ascomycetes
    S. Brul
    A. King
    J.M. van der Vaart
    J. Chapman
    F. Klis
    C.T. Verrips
    Antonie van Leeuwenhoek, 1997, 72 : 229 - 237