Enhanced Skeletal Muscle Lipid Oxidative Efficiency in Insulin-Resistant vs Insulin-Sensitive Nondiabetic, Nonobese Humans

被引:17
作者
Galgani, Jose E. [1 ,2 ,3 ]
Vasquez, Karla [1 ]
Watkins, Guillermo [4 ]
Dupuy, Aude [5 ,7 ]
Bertrand-Michel, Justine [5 ,7 ]
Levade, Thierry [6 ,7 ,8 ]
Moro, Cedric [7 ,9 ]
机构
[1] Univ Chile, Fac Med, Dept Nutr, Santiago 7, Chile
[2] Pontificia Univ Catolica Chile, Fac Med, Dept Nutr Diabet & Metab, Santiago 340, Chile
[3] Pontificia Univ Catolica Chile, Fac Med, Sch Nutr & Dietet, Santiago 340, Chile
[4] Univ Chile, Clin Hosp JJ Aguirre, Dept Surg, Santiago, Chile
[5] Ctr Hosp Univ Purpan, Inst Natl Sante & Rech Med 1048, Lipid Core Facil Toulouse Metatoul Platform, F-31059 Toulouse, France
[6] Ctr Hosp Univ Purpan, Inst Federatif Biol, Lab Biochim Metab, F-31059 Toulouse, France
[7] Univ Toulouse 3, F-31432 Toulouse, France
[8] Canc Res Ctr Toulouse, Inst Natl Sante & Rech Med, Unite Mixte Rech 1037, F-31432 Toulouse, France
[9] Inst Metab & Cardiovasc Dis, Inst Natl Sante & Rech Med, Unite Mixte Rech 1048, Obes Res Lab, F-31432 Toulouse, France
关键词
FATTY-ACID OXIDATION; MITOCHONDRIAL DYSFUNCTION; OBESITY; DEFICIENCY; METABOLISM; GLUCOSE; RESPIRATION; CONTRIBUTE; CAPACITY;
D O I
10.1210/jc.2012-3111
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Context: Skeletal muscle insulin resistance is proposed to result from impaired skeletal muscle lipid oxidative capacity. However, there is no evidence indicating that muscle lipid oxidative capacity is impaired in healthy otherwise insulin-resistant individuals. Objective: The objective of the study was to assess muscle lipid oxidative capacity in young, nonobese, glucose-tolerant, insulin-resistant vs insulin-sensitive individuals. Design and Volunteers: In 13 insulin-sensitive [by Matsuda index (MI) (22.6 +/- 0.6 [SE] kg/m(2)); 23 +/- 1 years; MI 5.9 +/- 0.1] and 13 insulin-resistant (23.2 +/- 0.6kg/m(2); 23 +/- 3 years; MI 2.2 +/- 0.1) volunteers, skeletal muscle biopsy, blood extraction before and after an oral glucose load, and dual-energy x-ray absorptiometry were performed. Main Outcome Measures: Skeletal muscle mitochondrial to nuclear DNA ratio, oxidative phosphorylation protein content, and citrate synthase and beta-hydroxyacyl-CoA dehydrogenase activities were assessed. Muscle lipids and palmitate oxidation ((CO2)-C-14 and C-14-acid soluble metabolites production) at 4 [1-C-14] palmitate concentrations (45-520 mu M) were also measured. Results: None of the muscle mitochondrial measures showed differences between groups, except for a higher complex V protein content in insulin-resistant vs insulin-sensitive volunteers (3.5 +/- 0.4 vs 2.2 +/- 0.4; P = .05). Muscle ceramide content was significantly increased in insulin-resistant vs insulin-sensitive individuals (P = .04). Total palmitate oxidation showed a similar concentration-dependent response in both groups (P = .69). However, lipid oxidative efficiency (CO2 to C-14-acid soluble metabolites ratio) was enhanced in insulin-resistant vs insulin-sensitive individuals, particularly at the highest palmitate concentration (0.24 +/- 0.04 vs 0.12 +/- 0.02; P = .02). Conclusions: We found no evidence of impaired muscle mitochondrial oxidative capacity in young, nonobese, glucose-tolerant, otherwise insulin-resistant vs insulin-sensitive individuals. Enhanced muscle lipid oxidative efficiency in insulin resistance could be a potential mechanism to prevent further lipotoxicity. (J Clin Endocrinol Metab 98: E646-E653, 2013)
引用
收藏
页码:E646 / E653
页数:8
相关论文
共 36 条
[11]   Plasma Metabolomic Profiles Reflective of Glucose Homeostasis in Non-Diabetic and Type 2 Diabetic Obese African-American Women [J].
Fiehn, Oliver ;
Garvey, W. Timothy ;
Newman, John W. ;
Lok, Kerry H. ;
Hoppel, Charles L. ;
Adams, Sean H. .
PLOS ONE, 2010, 5 (12) :1-10
[12]   The proteomic signature of insulin-resistant human skeletal muscle reveals increased glycolytic and decreased mitochondrial enzymes [J].
Giebelstein, J. ;
Poschmann, G. ;
Hojlund, K. ;
Schechinger, W. ;
Dietrich, J. W. ;
Levin, K. ;
Beck-Nielsen, H. ;
Podwojski, K. ;
Stuehler, K. ;
Meyer, H. E. ;
Klein, H. H. .
DIABETOLOGIA, 2012, 55 (04) :1114-1127
[13]   The International Physical Activity Questionnaire (IPAQ):: a study of concurrent and construct validity [J].
Hagstromer, Maria ;
Oja, Pekka ;
Sjostrom, Michael .
PUBLIC HEALTH NUTRITION, 2006, 9 (06) :755-762
[14]   Abnormal glucose homeostasis in skeletal muscle-specific PGC-1α knockout mice reveals skeletal muscle-pancreatic β cell crosstalk [J].
Handschin, Christoph ;
Choi, Cheol Soo ;
Chin, Sherry ;
Kim, Sheene ;
Kawamori, Dan ;
Kurpad, Amarnath J. ;
Neubauer, Nicole ;
Hu, Jiang ;
Mootha, Vamsi K. ;
Kim, Young-Bum ;
Kulkarni, Rohit N. ;
Shulman, Gerald I. ;
Spiegelman, Bruce M. .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (11) :3463-3474
[15]   Skeletal muscle "mitochondrial deficiency" does not mediate insulin resistance [J].
Holloszy, John O. .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2009, 89 (01) :463S-466S
[16]  
Kelley DE, 1999, AM J PHYSIOL-ENDOC M, V277, pE1130
[17]   IMPAIRED FREE FATTY-ACID UTILIZATION BY SKELETAL-MUSCLE IN NON-INSULIN-DEPENDENT DIABETES-MELLITUS [J].
KELLEY, DE ;
SIMONEAU, JA .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 94 (06) :2349-2356
[18]   Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes [J].
Kelley, DE ;
He, J ;
Menshikova, EV ;
Ritov, VB .
DIABETES, 2002, 51 (10) :2944-2950
[19]   Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance [J].
Koves, Timothy R. ;
Ussher, John R. ;
Noland, Robert C. ;
Slentz, Dorothy ;
Mosedale, Merrie ;
Ilkayeva, Olga ;
Bain, James ;
Stevens, Robert ;
Dyck, Jason R. B. ;
Newgard, Christopher B. ;
Lopaschuk, Gary D. ;
Muoio, Deborah M. .
CELL METABOLISM, 2008, 7 (01) :45-56
[20]   INSULIN RESISTANCE IN OBESITY IS ASSOCIATED WITH ELEVATED BASAL LACTATE LEVELS AND DIMINISHED LACTATE APPEARANCE FOLLOWING INTRAVENOUS GLUCOSE AND INSULIN [J].
LOVEJOY, J ;
NEWBY, FD ;
GEBHART, SSP ;
DIGIROLAMO, M .
METABOLISM-CLINICAL AND EXPERIMENTAL, 1992, 41 (01) :22-27