A constructive description of ground states and Gibbs measures for Ising model with two-step interactions on Cayley tree

被引:23
作者
Rozikov, UA [1 ]
机构
[1] Inst Math, Tashkent 700125, Uzbekistan
关键词
Cayley tree; configuration; Ising model; ground state; Gibbs measure;
D O I
10.1007/s10955-005-8029-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Ising model with (competing) two-step interactions and spin values +/- 1, on a Cayley tree of order k >= 1. We constructively describe groundstates and verify the Peierls condition for the model. We define notion of a contour for the model on the Cayley tree. Using a contour argument we show the existence of two different Gibbs measures.
引用
收藏
页码:217 / 235
页数:19
相关论文
共 21 条
  • [1] Baxter R J., 1982, EXACTLY SOLVED MODEL
  • [2] RIGIDITY OF THE CRITICAL PHASES ON A CAYLEY TREE
    Bleher, P.
    Ruiz, J.
    Schonmann, R. H.
    Shlosman, S.
    Zagrebnov, V.
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2001, 1 (03) : 345 - 363
  • [3] BLEHER P.M., 1990, THEOR PROBAB APPL, V35, P216, DOI [10.1137/1135031, DOI 10.1137/1135031.]
  • [4] ON THE PURITY OF THE LIMITING GIBBS STATE FOR THE ISING-MODEL ON THE BETHE LATTICE
    BLEHER, PM
    RUIZ, J
    ZAGREBNOV, VA
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (1-2) : 473 - 482
  • [5] BORGS C, 2004, STAT PHYS EXPANSIONS
  • [6] EQUILIBRIUM STATES OF ISING-MODEL IN 2-PHASE REGION
    GALLAVOTTI, G
    MIRACLES.S
    [J]. PHYSICAL REVIEW B-SOLID STATE, 1972, 5 (07): : 2555 - +
  • [7] Description of periodic extreme Gibbs measures of some lattice models on the Cayley tree
    Ganikhodzhaev, NN
    Rozikov, UA
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 111 (01) : 480 - 486
  • [8] GERTSIK VM, 1974, FUNKT ANAL PRIL, V8, P201
  • [9] PEIERLS CONDITION AND NUMBER OF GROUND-STATES
    HOLSZTYNSKI, W
    SLAWNY, J
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 61 (02) : 177 - 190