BEST PROXIMITY POINTS AND FIXED POINT RESULTS FOR CERTAIN MAPS IN BANACH SPACES

被引:12
作者
Gabeleh, Moosa [1 ,2 ]
机构
[1] Ayatollah Boroujerdi Univ, Dept Math, Boroujerd, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Best proximity point; Cyclic Kannan nonexpansive; Fixed point; Proximal quasi-normal structure; T-regular mapping; RELATIVELY NONEXPANSIVE-MAPPINGS; QUASI-ASYMPTOTIC CONTRACTIONS; CONVEX METRIC-SPACES; UNIFORM-SPACES; CONVERGENCE; THEOREMS; EXISTENCE;
D O I
10.1080/01630563.2015.1041143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we establish some new existence theorems for best proximity point and fixed point problems for certain mappings in Banach spaces. The main results of this article improve and extend the results presented by Wong [25]. Examples are given to support the usability of our main conclusions.
引用
收藏
页码:1013 / 1028
页数:16
相关论文
共 25 条
[11]   On the Structure of Minimal Sets of Relatively Nonexpansive Mappings [J].
Espinola, Rafa ;
Gabeleh, Moosa .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2013, 34 (08) :845-860
[12]  
Gabeleh M., J OPTIM THEORY, V164, P565
[13]   Proximal quasi-normal structure in convex metric spaces [J].
Gabeleh, Moosa .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2014, 22 (03) :45-58
[14]   SEMI-NORMAL STRUCTURE AND BEST PROXIMITY PAIR RESULTS IN CONVEX METRIC SPACES [J].
Gabeleh, Moosa .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2014, 8 (02) :214-228
[15]  
KANNAN R, 1973, P AM MATH SOC, V38, P111
[16]  
Khamsi M. A., 2011, PURE APPL MATH, V53
[17]   A FIXED POINT THEOREM FOR MAPPINGS WHICH DO NOT INCREASE DISTANCES [J].
KIRK, WA .
AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (09) :1004-&
[18]   Proximinal retracts and best proximity pair theorems [J].
Kirk, WA ;
Reich, S ;
Veeramani, P .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (7-8) :851-862
[19]   A Note on Existence and Convergence of Best Proximity Points for Pointwise Cyclic Contractions [J].
Kosuru, G. Sankara Raju ;
Veeramani, P. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (07) :821-830
[20]   ON SOME FIXED-POINT THEOREMS ON UNIFORMLY CONVEX BANACH-SPACES [J].
VEERAMANI, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 167 (01) :160-166