BEST PROXIMITY POINTS AND FIXED POINT RESULTS FOR CERTAIN MAPS IN BANACH SPACES

被引:12
作者
Gabeleh, Moosa [1 ,2 ]
机构
[1] Ayatollah Boroujerdi Univ, Dept Math, Boroujerd, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Best proximity point; Cyclic Kannan nonexpansive; Fixed point; Proximal quasi-normal structure; T-regular mapping; RELATIVELY NONEXPANSIVE-MAPPINGS; QUASI-ASYMPTOTIC CONTRACTIONS; CONVEX METRIC-SPACES; UNIFORM-SPACES; CONVERGENCE; THEOREMS; EXISTENCE;
D O I
10.1080/01630563.2015.1041143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we establish some new existence theorems for best proximity point and fixed point problems for certain mappings in Banach spaces. The main results of this article improve and extend the results presented by Wong [25]. Examples are given to support the usability of our main conclusions.
引用
收藏
页码:1013 / 1028
页数:16
相关论文
共 25 条
[1]  
Abkar A, 2013, J NONLINEAR CONVEX A, V14, P653
[2]   Best proximity points for asymptotic cyclic contraction mappings [J].
Abkar, A. ;
Gabeleh, M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) :7261-7268
[3]   Convergence and existence results for best proximity points [J].
Al-Thagafi, M. A. ;
Shahzad, Naseer .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) :3665-3671
[4]   A FIXED-POINT FREE NON-EXPANSIVE MAP [J].
ALSPACH, DE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 82 (03) :423-424
[5]  
[Anonymous], REND 1 MATH U TRIEST
[6]   Extensions of Banach's Contraction Principle [J].
Basha, S. Sadiq .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (05) :569-576
[7]  
Brodskii M.S., 1948, Dokl. Akad. Nauk SSSR (N.S.), V59, P837
[8]   Existence and convergence of best proximity points [J].
Eldred, A. Anthony ;
Veeramani, P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) :1001-1006
[9]   Proximal normal structure and relatively nonexpansive mappings [J].
Eldred, AA ;
Kirk, WA ;
Veeramani, P .
STUDIA MATHEMATICA, 2005, 171 (03) :283-293
[10]   A new approach to relatively nonexpansive mappings [J].
Espinola, Rafa .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) :1987-1995